TinyML Cookbook, published by Packt

Overview

TinyML Cookbook

TinyML Cookbook

This is the code repository for TinyML Cookbook, published by Packt.

Author: Gian Marco Iodice
Publisher: Packt

About the book

This book is about TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget, we can give life to objects that interact with the world around us smartly and transform the way we live for the better. However, this field can be hard to approach if we come from an ML background with a little familiarity with embedded systems such as microcontrollers. Therefore, this book wants to dispel these barriers and make TinyML also accessible to developers with no embedded programming experience through practical examples. Each chapter will be a self-contained project to learn how to use some of the technologies at the heart of TinyML, interface with electronic components like sensors, and deploy ML models on memory-constrained devices.

Who is this book for

This book is for ML developers/engineers interested in developing machine learning applications on microcontrollers through practical examples quickly. The book will help you expand your knowledge towards the revolution of tiny machine learning (TinyML) by building end-to-end smart projects with real-world data sensors on Arduino Nano 33 BLE Sense and Raspberry Pi Pico.

Basic familiarity with C/C++, Python programming, and a command-line interface (CLI) is required. However, no prior knowledge of microcontrollers is necessary.

Technical requirements

You will need a computer (either a laptop or desktop) with an x86-64 architecture and at least one USB port for programming Arduino Nano 33 BLE Sense and Raspberry Pi Pico microcontroller boards. For the first six chapters, you can use Ubuntu 18.04 (or later) or Windows (for example, Windows 10) as an operating system (OS). However, you will need Ubuntu 18.04 (or later) for chapter 7 and chapter 8.

The only software prerequisites for your computer are:

  • Python (Python 3.7 recommended)
  • Text editor (for example, gedit on Ubuntu)
  • Media player (for example, VLC)
  • Image viewer (for example, the default app in Ubuntu or Windows 10)
  • Web browser (for example, Google Chrome)

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be developed directly in the web browser with the Arduino Web Editor. However, you may also consider using the local Arduino IDE following the instructions provided at this link.

The following table summarizes the hardware devices and software tools covered in each chapter:

Chapter Devices SW tools Electronic components
1 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor None
2 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor - A micro-USB cable
- 1x half-size breadboard
- 1x red LED
- 1x 220 Ohm resistor
- 1x 3 AA battery holder
- 1x 4 AA battery holder
- 4x AA batteries
- 5x jumper wires
3 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Google Colaboratory
- A micro-USB cable
- 1x half-size breadboard
- 1x AM2302 module with the DHT22 sensor
- 5x jumper wires
4 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x electrect microphone amplifier - MAX9814
- 2x 220 Ohm resistor
- 1x 100 Ohm resistor
- 1x red LED
- 1x green LED
- 1x blue LED
- 1x push-button
- 11x jumper wires
5 - Arduino Nano 33 BLE Sense - Arduino Web Editor
- Google Colaboratory
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x OV7670 camera module
- 1x push-button
- 18 jumper wires
6 - Raspberry Pi Pico - Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x MPU-6050 IMU
- 4x jumper wires
7 - Arm Cortex-M3 Virtual Platform (QEMU) - Google Colaboratory
- Python
- Zephyr project
None
8 - Virtual Arm Ethos-U55 microNPU - Arm Corstone-300 FVP
- Python
- TVM
None

Citation

To cite TinyML Cookbook in publications use:

@book{iodice2022tinymlcookbook,
  title={TinyML Cookbook: Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter},
  author={Gian Marco Iodice},
  year={2022},
  publisher={Packt},
  isbn = {9781801814973},
  url = {https://www.packtpub.com/product/tinyml-cookbook/9781801814973}
}

About the author

Gian Marco Iodice is team and tech lead in the Machine Learning Group at Arm, who co-created the Arm Compute Library in 2017. Arm Compute Library is currently the most performant library for ML on Arm, and it’s deployed on billions of devices worldwide – from servers to smartphones.

Gian Marco holds an MSc degree, with honors, in electronic engineering from the University of Pisa (Italy) and has several years of experience developing ML and computer vision algorithms on edge devices. Now, he's leading the ML performance optimization on Arm Mali GPUs.

In 2020, Gian Marco co-founded the TinyML UK meetup group to encourage knowledge sharing, educate, and inspire the next generation of ML developers on tiny and power-efficient devices.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022