TinyML Cookbook, published by Packt

Overview

TinyML Cookbook

TinyML Cookbook

This is the code repository for TinyML Cookbook, published by Packt.

Author: Gian Marco Iodice
Publisher: Packt

About the book

This book is about TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget, we can give life to objects that interact with the world around us smartly and transform the way we live for the better. However, this field can be hard to approach if we come from an ML background with a little familiarity with embedded systems such as microcontrollers. Therefore, this book wants to dispel these barriers and make TinyML also accessible to developers with no embedded programming experience through practical examples. Each chapter will be a self-contained project to learn how to use some of the technologies at the heart of TinyML, interface with electronic components like sensors, and deploy ML models on memory-constrained devices.

Who is this book for

This book is for ML developers/engineers interested in developing machine learning applications on microcontrollers through practical examples quickly. The book will help you expand your knowledge towards the revolution of tiny machine learning (TinyML) by building end-to-end smart projects with real-world data sensors on Arduino Nano 33 BLE Sense and Raspberry Pi Pico.

Basic familiarity with C/C++, Python programming, and a command-line interface (CLI) is required. However, no prior knowledge of microcontrollers is necessary.

Technical requirements

You will need a computer (either a laptop or desktop) with an x86-64 architecture and at least one USB port for programming Arduino Nano 33 BLE Sense and Raspberry Pi Pico microcontroller boards. For the first six chapters, you can use Ubuntu 18.04 (or later) or Windows (for example, Windows 10) as an operating system (OS). However, you will need Ubuntu 18.04 (or later) for chapter 7 and chapter 8.

The only software prerequisites for your computer are:

  • Python (Python 3.7 recommended)
  • Text editor (for example, gedit on Ubuntu)
  • Media player (for example, VLC)
  • Image viewer (for example, the default app in Ubuntu or Windows 10)
  • Web browser (for example, Google Chrome)

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be developed directly in the web browser with the Arduino Web Editor. However, you may also consider using the local Arduino IDE following the instructions provided at this link.

The following table summarizes the hardware devices and software tools covered in each chapter:

Chapter Devices SW tools Electronic components
1 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor None
2 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor - A micro-USB cable
- 1x half-size breadboard
- 1x red LED
- 1x 220 Ohm resistor
- 1x 3 AA battery holder
- 1x 4 AA battery holder
- 4x AA batteries
- 5x jumper wires
3 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Google Colaboratory
- A micro-USB cable
- 1x half-size breadboard
- 1x AM2302 module with the DHT22 sensor
- 5x jumper wires
4 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x electrect microphone amplifier - MAX9814
- 2x 220 Ohm resistor
- 1x 100 Ohm resistor
- 1x red LED
- 1x green LED
- 1x blue LED
- 1x push-button
- 11x jumper wires
5 - Arduino Nano 33 BLE Sense - Arduino Web Editor
- Google Colaboratory
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x OV7670 camera module
- 1x push-button
- 18 jumper wires
6 - Raspberry Pi Pico - Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x MPU-6050 IMU
- 4x jumper wires
7 - Arm Cortex-M3 Virtual Platform (QEMU) - Google Colaboratory
- Python
- Zephyr project
None
8 - Virtual Arm Ethos-U55 microNPU - Arm Corstone-300 FVP
- Python
- TVM
None

Citation

To cite TinyML Cookbook in publications use:

@book{iodice2022tinymlcookbook,
  title={TinyML Cookbook: Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter},
  author={Gian Marco Iodice},
  year={2022},
  publisher={Packt},
  isbn = {9781801814973},
  url = {https://www.packtpub.com/product/tinyml-cookbook/9781801814973}
}

About the author

Gian Marco Iodice is team and tech lead in the Machine Learning Group at Arm, who co-created the Arm Compute Library in 2017. Arm Compute Library is currently the most performant library for ML on Arm, and it’s deployed on billions of devices worldwide – from servers to smartphones.

Gian Marco holds an MSc degree, with honors, in electronic engineering from the University of Pisa (Italy) and has several years of experience developing ML and computer vision algorithms on edge devices. Now, he's leading the ML performance optimization on Arm Mali GPUs.

In 2020, Gian Marco co-founded the TinyML UK meetup group to encourage knowledge sharing, educate, and inspire the next generation of ML developers on tiny and power-efficient devices.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022