This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

Related tags

Deep LearningObjProp
Overview

ObjProp

Introduction

This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

Installation

This repo is built using mmdetection. To install the dependencies, first clone the repository locally:

git clone https://github.com/anirudh-chakravarthy/objprop.git

Then, install PyTorch 1.1.0, torchvision 0.3.0, mmcv 0.2.12:

conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch
pip install mmcv==0.2.12

Then, install the CocoAPI for YouTube-VIS

conda install cython scipy
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

Training

First, download and prepare the YouTube-VIS dataset using the following instructions.

To train ObjProp, run the following command:

python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py

In order to change the arguments such as dataset directory, learning rate, number of GPUs, etc, refer to the following configuration file configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py.

Inference

To perform inference using ObjProp, run the following command:

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py [MODEL_PATH] --out [OUTPUT_PATH.json] --eval segm

A JSON file with the inference results will be saved at OUTPUT_PATH.json. To evaluate the performance, submit the result file to the evaluation server.

License

ObjProp is released under the Apache 2.0 license.

Citation

@article{Chakravarthy2021ObjProp,
  author = {Anirudh S Chakravarthy and Won-Dong Jang and Zudi Lin and Donglai Wei and Song Bai and Hanspeter Pfister},  
  title = {Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation},
  journal = {CoRR},
  volume = {abs/2111.07529},
  year = {2021},
  url = {https://arxiv.org/abs/2111.07529}
}
Owner
Anirudh S Chakravarthy
MS in Computer Vision, CMU | Research Intern, Harvard VCG | B.E. Computer Science, BITS Pilani. Visit my site for more.
Anirudh S Chakravarthy
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022