Fully Convolutional DenseNets for semantic segmentation.

Overview

Introduction

This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. We investigate the use of Densely Connected Convolutional Networks for semantic segmentation, and report state of the art results on datasets such as CamVid.

Installation

You need to install :

Data

The data loader is now available here : https://github.com/fvisin/dataset_loaders Thanks a lot to Francesco Visin, please cite if you use his data loader. Some adaptations may be do on the actual code, I hope to find some time to modify it !


The data-loader we used for the experiments will be released later. If you do want to train models now, you need to create a function load_data which returns 3 iterators (for training, validation and test). When applying next(), the iterator returns two values X, Y where X is the batch of input images (shape= (batch_size, 3, n_rows, n_cols), dtype=float32) and Y the batch of target segmentation maps (shape=(batch_size, n_rows, n_cols), dtype=int32) where each pixel in Y is an int indicating the class of the pixel.

The iterator must also have the following methods (so they are not python iterators) : get_n_classes (returns the number of classes), get_n_samples (returns the number of examples in the set), get_n_batches (returns the number of batches necessary to see the entire set) and get_void_labels (returns a list containing the classes associated to void). It might be easier to change directly the files train.py and test.py.

Run experiments

The architecture of the model is defined in FC-DenseNet.py. To train a model, you need to prepare a configuration file (folder config) where all the parameters needed for creating and training your model are precised. DenseNets contain lot of connections making graph optimization difficult for Theano. We strongly recommend to use the flags described further.

To train the FC-DenseNet103 model, use the command : THEANO_FLAGS='device=cuda,optimizer=fast_compile,optimizer_including=fusion' python train.py -c config/FC-DenseNet103.py -e experiment_name. All the logs of the experiments are stored in the folder experiment_name.

On a Titan X 12GB, for the model FC-DenseNet103 (see folder config), compilation takes around 400 sec and 1 epoch 120 sec for training and 40 sec for validation.

Use a pretrained model

We publish the weights of our model FC-DenseNet103. Metrics claimed in the paper (jaccard and accuracy) can be verified running THEANO_FLAGS='device=cuda,optimizer=fast_compile,optimizer_including=fusion' python test.py

About the "m" number in the paper

There is a small error with the "m" number in the Table 2 of the paper (that you may understand when running the code!). All values from the bottleneck to the last block (880, 1072, 800 and 368) should be incremented by 16 (896, 1088, 816 and 384).

Here how we compute this value representing the number of feature maps concatenated into the "stack" :

  • First convolution : m=48
  • In the downsampling part + bottleneck, m[B] = m[B-1] + n_layers[B] * growth_rate [linear growth]. First block : m = 48 + 4x16 = 112. Second block m = 112 + 5x16 = 192. Until the bottleneck : m = 656 + 15x16 = 896.
  • In the upsampling part, m[B] is the sum of 3 terms : the m value corresponding to same resolution in the downsampling part (skip connection), the number of feature maps from the upsampled block (n_layers[B-1] * growth_rate) and the number of feature maps in the new block (n_layers[B] * growth_rate). First upsampling, m = 656 + 15x16 + 12x16 = 1088. Second upsampling, m = 464 + 12x16 + 10x16 = 816. Third upsampling, m = 304 + 10x16 + 7x16 = 576, Fourth upsampling, m = 192 + 7x16 + 5x16 = 384 and fifth upsampling, m = 112 + 5x16 + 4x16 = 256
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023