Fully Convolutional DenseNets for semantic segmentation.

Overview

Introduction

This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. We investigate the use of Densely Connected Convolutional Networks for semantic segmentation, and report state of the art results on datasets such as CamVid.

Installation

You need to install :

Data

The data loader is now available here : https://github.com/fvisin/dataset_loaders Thanks a lot to Francesco Visin, please cite if you use his data loader. Some adaptations may be do on the actual code, I hope to find some time to modify it !


The data-loader we used for the experiments will be released later. If you do want to train models now, you need to create a function load_data which returns 3 iterators (for training, validation and test). When applying next(), the iterator returns two values X, Y where X is the batch of input images (shape= (batch_size, 3, n_rows, n_cols), dtype=float32) and Y the batch of target segmentation maps (shape=(batch_size, n_rows, n_cols), dtype=int32) where each pixel in Y is an int indicating the class of the pixel.

The iterator must also have the following methods (so they are not python iterators) : get_n_classes (returns the number of classes), get_n_samples (returns the number of examples in the set), get_n_batches (returns the number of batches necessary to see the entire set) and get_void_labels (returns a list containing the classes associated to void). It might be easier to change directly the files train.py and test.py.

Run experiments

The architecture of the model is defined in FC-DenseNet.py. To train a model, you need to prepare a configuration file (folder config) where all the parameters needed for creating and training your model are precised. DenseNets contain lot of connections making graph optimization difficult for Theano. We strongly recommend to use the flags described further.

To train the FC-DenseNet103 model, use the command : THEANO_FLAGS='device=cuda,optimizer=fast_compile,optimizer_including=fusion' python train.py -c config/FC-DenseNet103.py -e experiment_name. All the logs of the experiments are stored in the folder experiment_name.

On a Titan X 12GB, for the model FC-DenseNet103 (see folder config), compilation takes around 400 sec and 1 epoch 120 sec for training and 40 sec for validation.

Use a pretrained model

We publish the weights of our model FC-DenseNet103. Metrics claimed in the paper (jaccard and accuracy) can be verified running THEANO_FLAGS='device=cuda,optimizer=fast_compile,optimizer_including=fusion' python test.py

About the "m" number in the paper

There is a small error with the "m" number in the Table 2 of the paper (that you may understand when running the code!). All values from the bottleneck to the last block (880, 1072, 800 and 368) should be incremented by 16 (896, 1088, 816 and 384).

Here how we compute this value representing the number of feature maps concatenated into the "stack" :

  • First convolution : m=48
  • In the downsampling part + bottleneck, m[B] = m[B-1] + n_layers[B] * growth_rate [linear growth]. First block : m = 48 + 4x16 = 112. Second block m = 112 + 5x16 = 192. Until the bottleneck : m = 656 + 15x16 = 896.
  • In the upsampling part, m[B] is the sum of 3 terms : the m value corresponding to same resolution in the downsampling part (skip connection), the number of feature maps from the upsampled block (n_layers[B-1] * growth_rate) and the number of feature maps in the new block (n_layers[B] * growth_rate). First upsampling, m = 656 + 15x16 + 12x16 = 1088. Second upsampling, m = 464 + 12x16 + 10x16 = 816. Third upsampling, m = 304 + 10x16 + 7x16 = 576, Fourth upsampling, m = 192 + 7x16 + 5x16 = 384 and fifth upsampling, m = 112 + 5x16 + 4x16 = 256
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022