Starter Code for VALUE benchmark

Overview

StarterCode for VALUE Benchmark

This is the starter code for VALUE Benchmark [website], [paper].

Overview of VALUE Benchmark

This repository currently supports all baseline models in VALUE paper, including training with different video-subtitle fusion methods, different input channels, different visual representations and multi-task training. You can also perform transfer evaluation between different tasks with our evaluation code.

Before dive into the baseline models mentioned above, please make yourself familiar with the codebase by going through the examples in Quick Start and Single Task Finetuning.

The code in this repo are copied/modified from open-source implementations made available by HERO.

Updates

  • [7/27/2021] Please re-download violin_test_private.db at this link if you downloaded via script/download_violin.sh prior to 7/27/2021. The previous version is not consistent with our release, sorry for your inconvenience.

Requirements

We use the provided Docker image in HERO for easier reproduction. Please follow Requirements in HERO to set up the environment.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get the latest pretrained checkpoints from HERO.

We use TVR as an end-to-end example for single-task finetuning.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_tvr.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── video_db
    │   ├── tv
    ├── pretrained
    │   └── hero-tv-ht100.pt
    └── txt_db
        ├── tv_subtitles.db
        ├── tvr_train.db
        ├── tvr_val.db
        └── tvr_test.db
    
  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/video_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the TVR task.

    # inside the container
    horovodrun -np 8 python train_retrieval.py --config config/train-tvr-8gpu.json \
        --output_dir $YOUR_TVR_OUTPUT_DIR
    
    # for single gpu
    python train_retrieval.py --config $YOUR_CONFIG_JSON
  4. Run inference for the TVR task.

    # inference, inside the container
    python eval_vcmr.py --query_txt_db /txt/tvr_val.db/ --split val \
        --vfeat_db /video/tv/ --sub_txt_db /txt/tv_subtitles.db/ \
        --output_dir $YOUR_TVR_OUTPUT_DIR --checkpoint $BEST_CKPT_STEP \
        --task tvr
    

    The result file will be written at ${YOUR_TVR_OUTPUT_DIR}/results_val/results_${BEST_CKPT_STEP}_all.json. Change to --query_txt_db /txt/tvr_test.db/ --split test for inference on test split. Please format the result file as requested in VALUE Evaluation Tools for submission, this repository does not include formatting.

  5. Misc. In case you would like to reproduce the whole preprocessing pipeline.

  • Text annotation and subtitle preprocessing

    # outside of the container
    # make sure you have downloaded/constructed the video dbs for TV dataset
    # the prepro of tv_subtitles.db requires information from video_db/tv
    bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db \
        $PATH_TO_STORAGE/ann $PATH_TO_STORAGE/video_db
  • Video feature extraction

    We follow feature extraction code at HERO_Video_Feature_Extractor. Please follow the link for instructions to extract video features from ResNet, SlowFast, S3D in Mil-NCE and CLIP-ViT models. These features are saved as separate .npz files per video.

  • Video feature preprocessing and saved to lmdb

    # inside of the container
    
    # Use resnet_slowfast as an example
    # Gather slowfast/resnet feature paths
    python scripts/collect_video_feature_paths.py  \
        --feature_dir $PATH_TO_STORAGE/vis_feat_dir\
        --output $PATH_TO_STORAGE/video_db --dataset $DATASET_NAME \
        --feat_version resnet_slowfast 
    
    # Convert to lmdb
    python scripts/convert_videodb.py \
        --vfeat_info_file $PATH_TO_STORAGE/video_db/$DATASET_NAME/resnet_slowfast_info.pkl \
        --output $PATH_TO_STORAGE/video_db --dataset $DATASET_NAME --frame_length 1.5 \
        --feat_version resnet_slowfast
    • --frame_length: 1 feature per "frame_length" seconds, we use 1.5 in our implementation. set it to be consistent with the one used in feature extraction.
    • --compress: enable compression of lmdb
    • --feat_version: choose from resnet_slowfast, resnet_mil-nce(ResNet+S3D in paper), clip-vit_slowfast, clip-vit_mil-nce(CLIP-ViT+S3D in paper).

VALUE Single Task Finetuning

Video Retrieval Tasks

All video retrieval tasks can be finetuned with train_retrieval.py. We use YC2R as an additional example to show how to perform single-task finetuning on video retrieval tasks.

  1. download data
    # outside of the container
    bash scripts/download_yc2.sh $PATH_TO_STORAGE
  2. train
    # inside the container
    horovodrun -np 4 python train_retrieval.py --config config/train-yc2r-4gpu.json \
        --output_dir $YC2R_EXP
  3. inference
    # inside the container
    python eval_vr.py --query_txt_db /txt/yc2r_test.db/ --split test \
        --vfeat_db /video/yc2/ --sub_txt_db /txt/yc2_subtitles.db/ \
        --output_dir $YC2R_EXP --checkpoint $ckpt --task yc2r
    The result file will be written at $YC2R_EXP/results_test/results_$ckpt_all.json, which can be submitted to the evaluation server. Please format the result file as requested in VALUE Evaluation Tools for submission.

Video QA Tasks

All video question answering models can be finetuned with train_qa.py. We use TVQA to demonstrate how to perform single-task finetuning on video question answering tasks.

  1. download data

    # outside of the container
    bash scripts/download_tvqa.sh $PATH_TO_STORAGE
  2. train

    # inside the container
    horovodrun -np 8 python train_qa.py --config config/train-tvqa-8gpu.json \
        --output_dir $TVQA_EXP
  3. inference

    # inside the container
    horovodrun -np 8 python eval_videoQA.py --query_txt_db /txt/tvqa_test.db/ --split test \
        --vfeat_db /video/tv/ --sub_txt_db /txt/tv_subtitles.db/ \
        --output_dir $TVQA_EXP --checkpoint $ckpt --task tvqa

    The result file will be written at $TVQA_EXP/results_test/results_$ckpt_all.json, which can be submitted to the evaluation server. Please format the result file as requested in VALUE Evaluation Tools for submission.

    Use eval_violin.py for inference on VIOLIN task.

Captioning tasks

All video captioning models can be finetuned with train_captioning.py. We use TVC to demonstrate how to perform single-task finetuning on video captioning tasks.

  1. download data

    # outside of the container
    bash scripts/download_tvc.sh $PATH_TO_STORAGE
  2. train

    # inside the container
    horovodrun -np 8 python train_captioning.py --config config/train-tvc-8gpu.json \
        --output_dir $TVC_EXP
  3. inference

    # inside the container
    python inf_tvc.py --model_dir $TVC_EXP --ckpt_step $ckpt \
        --target_clip /txt/tvc_val_release.jsonl --output tvc_val_output.jsonl
    • The result file will be written at $TVC_EXP/tvc_val_output.jsonl
    • change to --target_clip /txt/tvc_test_release.jsonl for test results.
    • see scripts/prepro_tvc.sh for LMDB preprocessing.

    Use inf_vatex_en_c.py / inf_yc2c.py for inference on VATEX_EN_C / YC2C task.

VALUE Multi-Task Finetuning

  1. download data

    # outside of the container
    bash scripts/download_all.sh $PATH_TO_STORAGE
  2. train

    # inside the container
    horovodrun -np 8 python train_all_multitask.py \
        --config config/train-all-multitask-8gpu.json \
        --output_dir $AT_PT_FT_EXP
    • --config: change config file for different multi-task settings.
      • MT by domain group: config/train-tv_domain-multitask-8gpu.json / config/train-youtube_domain-multitask-8gpu.json
      • MT by task type: config/train-retrieval-multitask-8gpu.json / config/train-qa-multitask-8gpu.json / config/train-caption-multitask-8gpu.json
      • AT: config/train-all-multitask-8gpu.json
    • For multi-task baselines without pre-training, refer to configs under config/FT_only_configs
  3. inference

    Follow the inference instructions above for each task.

Training with Different Input Channels

To reproduce our experiments with different input channels, change the training config via --config. Take TVR as an example:

  1. Video-only
    # inside the container
    horovodrun -np 8 python train_retrieval.py \
        --config config/FT_only_configs/train-tvr_video_only-8gpu.json \
        --output_dir $TVR_V_only_EXP
  2. Subtitle-only
    # inside the container
    
    horovodrun -np 8 python train_retrieval.py \
        --config config/FT_only_configs/train-tvr_sub_only-8gpu.json \
        --output_dir $TVR_S_only_EXP
  3. Video + Subtitle
    # inside the container
    
    horovodrun -np 8 python train_retrieval.py \
        --config config/FT_only_configs/train-tvr-8gpu.json \
        --output_dir $TVR_EXP

Training with Different Video-Subtitle Fusion Methods

To reproduce our experiments with different video-subtitle fusion methods, change the fusion methods via --model_config for training. Take TVR as an example:

# Training, inside the container
horovodrun -np 8 python train_retrieval.py --config config/FT_only_configs/train-tvr-8gpu.json \
    --output_dir $TVR_EXP --model_config config/model_config/hero_finetune.json
  • config/model_config/hero_finetune.json: default temporal align + cross-modal transformer
  • config/model_config/video_sub_sequence_finetune.json: sequence concatenation
  • config/model_config/video_sub_feature_add_finetune.json: temporal align + summation
  • config/model_config/video_sub_feature_concat_finetune.json: temporal align + concatenation

For two-stream experiments in our paper, please train video-only and subtitle-only models following Training with Video-only and Subtitle-only and use evaluation scripts in two_stream_eval. Take TVR as an example,

# Evaluation, inside the container
python eval_vcmr.py --query_txt_db /txt/tvr_val.db/ --split val \
    --vfeat_db /video/tv/ --sub_txt_db /txt/tv_subtitles.db/ \
    --video_only_model_dir $TVR_V_only_EXP --video_only_checkpoint $BEST_V_only_CKPT_STEP \
    --sub_only_model_dir $TVR_S_only_EXP --sub_only_checkpoint $BEST_S_only_CKPT_STEP \
    --task tvr

Training with Different Visual Representations

To reproduce our experiments with different visual representations, change the visual representations via --vfeat_version for training. Take TVR as an example:

# inside the container
horovodrun -np 8 python train_retrieval.py --config config/FT_only_configs/train-tvr-8gpu.json \
    --output_dir $TVR_EXP --vfeat_version resnet

We provide all feature variations used in the paper, including:

  • 2D features: resnet and clip-vit
  • 3D features: mil-nce(S3D in paper) and slowfast
  • 2D+3D features: resnet_slowfast, resnet_mil-nce(ResNet+S3D in paper), clip-vit_mil-nce(CLIP-ViT+S3D in paper), clip-vit_slowfast
  • --vfeat_version: default is set to be resnet_slowfast

Task Transferability Evaluation

To reproduce our experiments about task transferability, you will need to first have a trained model on source task and run evaluation on target task. Take TVR->How2R as an example:

  1. Train on TVR task
    # inside the container
    horovodrun -np 8 python train_retrieval.py --config config/FT_only_configs/train-tvr-8gpu.json \
        --output_dir $TVR_EXP 
  2. Evaluate the trained model on How2R task:
    # inside the container
    python eval_vcmr.py --query_txt_db /txt/how2r_val_1k.db/ --split val \
        --vfeat_db /video/how2/ --sub_txt_db /txt/how2_subtitles.db/ \
        --output_dir $TVR_EXP --checkpoint $BEST_TVR_CKPT_STEP \
        --task how2r

Pre-training

All VALUE baselines are based on the pre-trained checkpoint released in HERO. The pre-training experiments are not tested in this codebase.

If you wish to perform pre-training, please refer to instructions in HERO.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{li2021value,
  title={VALUE: A Multi-Task Benchmark for Video-and-Language Understanding Evaluation},
  author={Li, Linjie and Lei, Jie and Gan, Zhe and Yu, Licheng and Chen, Yen-Chun and Pillai, Rohit and Cheng, Yu and Zhou, Luowei and Wang, Xin Eric and Wang, William Yang and others},
  booktitle={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}

@inproceedings{li2020hero,
  title={HERO: Hierarchical Encoder for Video+ Language Omni-representation Pre-training},
  author={Li, Linjie and Chen, Yen-Chun and Cheng, Yu and Gan, Zhe and Yu, Licheng and Liu, Jingjing},
  booktitle={EMNLP},
  year={2020}
}

License

MIT

Owner
VALUE Benchmark
VALUE Benchmark
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023