Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Related tags

Deep Learninglorien
Overview

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Build Status codecov.io

Lorien is an infrastructure to massively explore/benchmark the best schedules of given deep learning models. Lorien is deep learning compiler (DLC) agnostic, so one can easily implement a Lorien dialect to support a new DLC.

Motivation

Although auto-tuning frameworks for deep learning compilers (e.g., TVM, Halide) are capable of delivering high-performance operators that match or even beat vendor kernel libraries, auto-tuning a deep learning model could take days or even weeks, especially for the model with many workloads like ResNet-152 or Inception V3.

With such a long tuning time, one key question To maintain the best user experience during deep model developments and deployments is How to promptly deliver schedules with reasonably good performance upon user requests? Accordingly, we design and implement Lorien to remove the following obstacles:

  1. Tuning Process Scalability and Stability. Long tuning time affects not only the time-to-market but the stability. To the best of our knowledge, none of existing auto-tuning frameworks is designed for tuning on multiple machines, and none of them consider fault tolerance. The tuning process, hence, has to be manually started over if it was accidentally interrupted. This is crucial especially on edge devices, which are less reliable than cloud instances and may fail frequently due to overheat or other factors.

  2. Tuning Result Management. Although almost all auto-tuning frameworks provide mechanisms to serialize tuning results for future applications, all of them use file-based mechanism and have different formats. As a result, engineers have additional work to orchestrate the data for efficient usage.

  3. Time to Deliver an Efficient Schedule. Even a database is constructed to serve most user requests, it is still possible that certain workloads are missing. However, modern auto-tuning frameworks usually leverage iterative search algorithms with on-device measurements, which usually take hours, to find an efficient schedule for an unseen workload. The unfavorably expensive querying/tuning overhead makes production deployment impractical.

Lorien is a unified and extensible infrastructure for delivering efficient deep learning workloads upon requests. Lorien allows auto-tuning deep learning frameworks to be easily plugged in as dialects, and supports large scale tuning on both cloud and edge platforms. The tuning results are managed in a NoSQL database with a unified data model that fits all auto-tuning frameworks. While the best schedules managed in the database can be used to compile deep learning models to achieve high performance, the tuning logs managed in a file system can also 1) enable more comprehensive performance analysis on different platforms, and 2) help train a performance cost model with an AutoML solution.

Please visit the official documentations for setup guideline and tutorials.

System Requirements

  • Python 3.6+

  • Amazon DynamoDB (local or aws): DynamoDB is used for storing and maintain the tuned schedules. You can choose to either of the following:

    1. Launch a local version using JVM on your machine, and specify endpoint URL (e.g. --db "endpoint_url: http://:8000") when invoking a tuning procses.

    2. Configure AWS credential on your machine to directly use AWS DynamoDB service. In this case, you do not have to specify any argument in tuning configurations.

  • AWS S3 (optional): S3 is used to store the full tuning logs (JSON files generated by AutoTVM). If you specify --commit-log-to bucket_name and configure an AWS credential on your machine, then all complete tuning logs will be uploaded to the S3 bucket for debugging or research prupose. Note that this is an optional requirement, so you can ignore the --commit-log-to argument if you do not want to keep full tuning logs.

  • AWS Batch (AWS ECR): You have to set up AWS batch computation environments, job queues, and job definitions in advance to use Lorien AWS batch worker for tuning. See this blog post for reference. You may also need to build an upload Lorien docker images to AWS ECR as the AWS batch job running container.

Docker Images

You can directly make use of pre-built Lorien docker images on Docker Hub, which includes two typs of images for CPU and CPU+CUDA platforms. The docker images have TVM deployed so you can launch a tuning process in the container after cloning Lorien. The docker image is also used for Lorien CI purpose.

Documentation

https://awslabs.github.io/lorien/

Citing Lorien

If you use Lorien in a scientific publication, please cite the following paper:

Cody Hao Yu, Xingjian Shi, Haichen Shen, Zhi Chen, Mu Li, Yida Wang, "Lorien: Efficient Deep Learning Workloads Delivery", Proceedings of the 12th ACM Symposium on Cloud Computing. 2021.

@inproceedings{yu2021lorien,
  title={Lorien: Efficient Deep Learning Workloads Delivery},
  author={Yu, Cody Hao and Shi, Xingjian and Shen, Haichen and Chen, Zhi and Li, Mu and Wang, Yida},
  booktitle={Proceedings of the Seventh ACM Symposium on Cloud Computing},
  year={2021}
}
Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022