Adaptive Attention Span for Reinforcement Learning

Overview

Adaptive Transformers in RL

Official implementation of Adaptive Transformers in RL

In this work we replicate several results from Stabilizing Transformers for RL on both Pong and rooms_select_nonmatching_object from DMLab30.

We also extend the Stable Transformer architecture with Adaptive Attention Span on a partially observable (POMDP) setting of Reinforcement Learning. To our knowledge this is one of the first attempts to stabilize and explore Adaptive Attention Span in an RL domain.

Steps to replicate what we did on your own machine

  1. Downloading DMLab:

  2. Downloading Atari: Getting Started with Gym– http://gym.openai.com/docs/#getting-started-with-gym

  3. Execution notes:

  • The experiments take around 4 hours on 32vCPUs and 2 P100 GPUs for 6 million environment interactions. To run without a GPU, use the flag “--disable_cuda”.
  • For more details on other flags, see the top of train.py (include a link to this file) which has descriptions for each.
  • All experiments use a slightly revised version of IMPALA from torchbeast

Snippets

Best performing adaptive attention span model on “rooms_select_nonmatching_object”:

python train.py --total_steps 20000000 \
--learning_rate 0.0001 --unroll_length 299 --num_buffers 40 --n_layer 3 \
--d_inner 1024 --xpid row85 --chunk_size 100 --action_repeat 1 \
--num_actors 32 --num_learner_threads 1 --sleep_length 20 \
--level_name rooms_select_nonmatching_object --use_adaptive \
--attn_span 400 --adapt_span_loss 0.025 --adapt_span_cache

Best performing Stable Transformer on Pong:

python train.py --total_steps 10000000 \
--learning_rate 0.0004 --unroll_length 239 --num_buffers 40 \
--n_layer 3 --d_inner 1024 --xpid row82 --chunk_size 80 \
--action_repeat 1 --num_actors 32 --num_learner_threads 1 \
--sleep_length 5 --atari True

Best performing Stable Transformer on “rooms_select_nonmatching_object”:

python train.py --total_steps 20000000 \
--learning_rate 0.0001 --unroll_length 299 \
--num_buffers 40 --n_layer 3 --d_inner 1024 \
--xpid row79 --chunk_size 100 --action_repeat 1 \
--num_actors 32 --num_learner_threads 1 --sleep_length 20 \
--level_name rooms_select_nonmatching_object  --mem_len 200

Reference

If you find this repository useful, do cite it with,

@article{kumar2020adaptive,
    title={Adaptive Transformers in RL},
    author={Shakti Kumar and Jerrod Parker and Panteha Naderian},
    year={2020},
    eprint={2004.03761},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023