Chunkmogrify: Real image inversion via Segments

Overview

Chunkmogrify: Real image inversion via Segments

Logo

Teaser video with live editing sessions can be found here

This code demonstrates the ideas discussed in arXiv submission Real Image Inversion via Segments.
http://arxiv.org/abs/2110.06269
(David Futschik, Michal Lukáč, Eli Shechtman, Daniel Sýkora)

Abstract:
We present a simple, yet effective approach to editing real images via generative adversarial networks (GAN). Unlike previous techniques, that treat all editing tasks as an operation that affects pixel values in the entire image in our approach we cut up the image into a set of smaller segments. For those segments corresponding latent codes of a generative network can be estimated with greater accuracy due to the lower number of constraints. When codes are altered by the user the content in the image is manipulated locally while the rest of it remains unaffected. Thanks to this property the final edited image better retains the original structures and thus helps to preserve natural look.

before after

before after

What do I need?

You will need a local machine with a relatively recent GPU - I wouldn't recommend trying Chunkmogrify with anything older than RTX 2080. It is technically possible to run even on CPU, but the operations become so slow that the user experience is not enjoyable.

Quick startup guide

Requirements:
Python 3.7 or newer

Note: If you are using Anaconda, I recommend creating a new environment to run this project. Packages installed with conda and pip often don't play together very nicely.

Steps to be able to successfully run the project:

  1. Clone or download the repository and open a terminal / Powershell instance in the directory.
  2. Install the required python packages by running pip install -r requirements.txt. This might take a while, since it will download a few packages which will be several hundred MBs of data. Some packages might need to compile their extensions (as well as this project itself), so a C++ compiler needs to be present. On Linux, this is typically not an issue, but running on Windows might require Visual Studio and CUDA installations to successfully setup the project.
  3. Run python app.py. When running for the first time, it will automatically download required resources, which are also several hundred megabytes. Progression of the download can be monitored in the command line window.

To see if everything installed and configured properly, load up a photo and try running a projection step. If there are no errors, you are good to go.

Possible problems:

Torch not compiled with CUDA enabled.
Run

pip uninstall torch
pip cache purge
pip install torch -f https://download.pytorch.org/whl/torch_stable.html

Explanation of usage

Tutorial video: click below

Open an image using File -> Image from File. There is a sample image provided to check functionality.

Mask painting:
Left click paints, right click unpaints. Mouse wheel controls the size of the brush.

Projection:
Input a number of steps (100 or 200 is ok, 500 is max before LR goes to 0 currently) and press Projection Steps. Wait until projection finishes, you can observe the global image view by choosing output mode Projection Only during this process. To fine-tune, you can perform a small number of Pivotal Tuning steps.

Editing:
To add an edit, click the double arrow down icon in the Attribute Editor on the left side. Choose the type of edit (W, S, Styleclip), the direction of the edit, and drag the sliders to change the currently masked region. Usually it's necessary to increase the multiplier before noticeable changes are reflected via the direction slider.

Multiple different edits can be composed on top of each other at the same time. Their order is largely irrelevant. Currently in the default mode, only one region is being edited, and so all selected edits apply to the same region. If you would like to change the region, you can Freeze the current image, and perform a new projection, but you will lose the ability to change existing edits.

To save the current image, click the Save Current Image button. If the Unalign checkbox is active, the program will attempt to compose the aligned face back into the original image. Saved images can be found in the SavedImages directory by default. This can be changed in _config.yaml.

Keyboard shortcuts

Current keyboard shortcuts include:

Show/Hide mask :: Alt+M
Toggle mask painting :: Alt+N

W-space editing

Source for some of the basic directions:
(https://twitter.com/robertluxemburg/status/1207087801344372736)

To add your own directions, save them in a numpy pickle format as a (num_ws, 512) or (1, 512) format and specify their path in w_directions.py.

Style-space editing (S space edits)

Source:
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
(https://arxiv.org/abs/2011.12799)
(https://github.com/betterze/StyleSpace)

The presets can be found in s_presets.py, some were taken directly from the paper, others I found by manual exploration. You can perform similar exploration by choosing the Custom preset once you have a projection.

StyleCLIP editing

Source:
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
(https://arxiv.org/abs/2103.17249)
(https://github.com/orpatashnik/StyleCLIP)

Pretrained models taken from (https://github.com/orpatashnik/StyleCLIP/blob/main/utils.py) and manually removed the decoder from the state dict, since it's not used and takes up majority of file size.

PTI Optimization

Source:
Pivotal Tuning for Latent-based Editing of Real Images
(https://arxiv.org/abs/2106.05744)

This method allows you to match the target photo very closely, while retaining editing capacities.

It's often good to run 30-50 iterations of PTI to get very close matching of the source image, which won't cause a very noticeable drop in the editing capabilities.

Attribution

This repository makes use of code provided by the various repositories linked above, plus additionally code from:

styleganv2-ada-pytorch (https://github.com/NVlabs/stylegan2-ada-pytorch)
poisson-image-editing (https://github.com/PPPW/poisson-image-editing) for optional support of idempotent blend (slow implementation of blending that only changes the masked part which can be accessed by uncommenting the option in synthesis.py)

Citation

If you find this code useful for your research, please cite the arXiv submission linked above.

Owner
David Futschik
PhD student @ CTU Prague, Czech Republic.
David Futschik
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022