RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Overview

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Real tiem detection

Real-time detection performance.

This repo contains the code and extra simulation results supporting the paper 'Robust Moving Target Defence Against False Data Injection Attacks in Power Grids' by Wangkun Xu, Imad M. Jaimoukha, and Fei Teng. The authors are with the Control and Power Group, Dept. of EEE, Imperial College London.

Note: The current version is incomplete, detailed algorithms are coming soon.

Installation

This project requires Python packages to run. The testing OS is Windows.

  1. Install the latest version Anaconda to your OS.
  2. Create a new env in Anaconda Prompt by conda create -n robust-mtd python=3.8.12.
  3. Direct to the env by conda activate robust-mtd.
  4. Install all requirements by conda install --file requirements.txt.
  5. Download everything to your PC in your_path and redirect to your path by cd your_path.

Packages

PYPOWER

POPOWER is a power flow and optimal power flow solver. It is part of MATPOWER to the Python programming language. We will use PYPOWER as the environment to build the system matrices, implement attacks and implement the MTD.

SciPy

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. In specific, we use the open source optimization solve 'Sequential Least Squares Programming (SLSQP)' to solve the nonlinear programming problem.

Running and Testing

  1. Change the test system, algorithm, and constraints, e.g. change everything in input_setting.py under the line:

    """
    EDIT HERE : CHANGE YOUR SETTINGS HERE!
    """ 
    

    Do not change elsewhere!

    The current support tests include:

    • case: IEEE case-6ww, case-14, and case-57;
    • MTD perturbation ratio: $\tau=0.2,0.3,0.4,0.5$;
    • Placement of D-FACTS devices: All, outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k while covering all necessary buses), and the outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k);
    • hidden_MTD: True or False. Normally, the robust algorithm with complete MTD configuration is not tested with the hiddenness;
    • column_constraint: True or False. If True, the constraint in principle 2 is added.

    You can also change:

    • The measurement noise covariance matrix;
    • The FPR of BDD;
    • The attack strength under test;

    The code is flexible. You can also add your own system as long as it uses PYPOWER or MATPOWER to formulate.

Extra Simulation Result

Owner
Ph.D. student at Control and Power Group, Imperial College London.
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022