Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

Overview

CLIP-Guided-Diffusion

Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

Original colab notebooks by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings):

  • Original 256x256 notebook: Open In Colab

It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion)

  • Original 512x512 notebook: Open In Colab

It uses a 512x512 unconditional ImageNet diffusion model fine-tuned from OpenAI's 512x512 class-conditional ImageNet diffusion model (https://github.com/openai/guided-diffusion)

Together with CLIP (https://github.com/openai/CLIP), they connect text prompts with images.

Either the 256 or 512 model can be used here (by setting --output_size to either 256 or 512)

Some example images:

"A woman standing in a park":

"An alien landscape":

"A painting of a man":

*images enhanced with Real-ESRGAN

You may also be interested in VQGAN-CLIP

Environment

  • Ubuntu 20.04 (Windows untested but should work)
  • Anaconda
  • Nvidia RTX 3090

Typical VRAM requirments:

  • 256 defaults: 10 GB
  • 512 defaults: 18 GB

Set up

This example uses Anaconda to manage virtual Python environments.

Create a new virtual Python environment for CLIP-Guided-Diffusion:

conda create --name cgd python=3.9
conda activate cgd

Download and change directory:

git clone https://github.com/nerdyrodent/CLIP-Guided-Diffusion.git
cd CLIP-Guided-Diffusion

Run the setup file:

./setup.sh

Or if you want to run the commands manually:

# Install dependencies

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
git clone https://github.com/openai/CLIP
git clone https://github.com/crowsonkb/guided-diffusion
pip install -e ./CLIP
pip install -e ./guided-diffusion
pip install lpips matplotlib

# Download the diffusion models

curl -OL --http1.1 'https://the-eye.eu/public/AI/models/512x512_diffusion_unconditional_ImageNet/512x512_diffusion_uncond_finetune_008100.pt'
curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'

Run

The simplest way to run is just to pass in your text prompt. For example:

python generate_diffuse.py -p "A painting of an apple"

Multiple prompts

Text and image prompts can be split using the pipe symbol in order to allow multiple prompts. You can also use a colon followed by a number to set a weight for that prompt. For example:

python generate_diffuse.py -p "A painting of an apple:1.5|a surreal painting of a weird apple:0.5"

Other options

There are a variety of other options to play with. Use help to display them:

python generate_diffuse.py -h
usage: generate_diffuse.py [-h] [-p PROMPTS] [-ip IMAGE_PROMPTS] [-ii INIT_IMAGE]
[-st SKIP_TIMESTEPS] [-is INIT_SCALE] [-m CLIP_MODEL] [-t TIMESTEPS]
[-ds DIFFUSION_STEPS] [-se SAVE_EVERY] [-bs BATCH_SIZE] [-nb N_BATCHES] [-cuts CUTN]
[-cutb CUTN_BATCHES] [-cutp CUT_POW] [-cgs CLIP_GUIDANCE_SCALE]
[-tvs TV_SCALE] [-rgs RANGE_SCALE] [-os IMAGE_SIZE] [-s SEED] [-o OUTPUT] [-nfp] [-pl]

init_image

  • 'skip_timesteps' needs to be between approx. 200 and 500 when using an init image.
  • 'init_scale' enhances the effect of the init image, a good value is 1000.

timesteps

The number of timesteps, or one of ddim25, ddim50, ddim150, ddim250, ddim500, ddim1000. Must go into diffusion_steps.

image guidance

  • 'clip_guidance_scale' Controls how much the image should look like the prompt.
  • 'tv_scale' Controls the smoothness of the final output.
  • 'range_scale' Controls how far out of range RGB values are allowed to be.

Examples using a number of options:

python generate_diffuse.py -p "An amazing fractal" -os=256 -cgs=1000 -tvs=50 -rgs=50 -cuts=16 -cutb=4 -t=200 -se=200 -m=ViT-B/32 -o=my_fractal.png

python generate_diffuse.py -p "An impressionist painting of a cat:1.75|trending on artstation:0.25" -cgs=500 -tvs=55 -rgs=50 -cuts=16 -cutb=2 -t=100 -ds=2000 -m=ViT-B/32 -pl -o=cat_100.png

(Funny looking cat, but hey!)

Other repos

You may also be interested in https://github.com/afiaka87/clip-guided-diffusion

For upscaling images, try https://github.com/xinntao/Real-ESRGAN

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
Owner
Nerdy Rodent
Just a nerdy rodent. I do arty stuff with computers.
Nerdy Rodent
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023