Adversarially Learned Inference

Related tags

Deep LearningALI
Overview

Adversarially Learned Inference

Code for the Adversarially Learned Inference paper.

Compiling the paper locally

From the repo's root directory,

$ cd papers
$ latexmk --pdf adverarially_learned_inference

Requirements

  • Blocks, development version
  • Fuel, development version

Setup

Clone the repository, then install with

$ pip install -e ALI

Downloading and converting the datasets

Set up your ~/.fuelrc file:

$ echo "data_path: \"<MY_DATA_PATH>\"" > ~/.fuelrc

Go to <MY_DATA_PATH>:

$ cd <MY_DATA_PATH>

Download the CIFAR-10 dataset:

$ fuel-download cifar10
$ fuel-convert cifar10
$ fuel-download cifar10 --clear

Download the SVHN format 2 dataset:

$ fuel-download svhn 2
$ fuel-convert svhn 2
$ fuel-download svhn 2 --clear

Download the CelebA dataset:

$ fuel-download celeba 64
$ fuel-convert celeba 64
$ fuel-download celeba 64 --clear

Training the models

Make sure you're in the repo's root directory.

CIFAR-10

$ THEANORC=theanorc python experiments/ali_cifar10.py

SVHN

$ THEANORC=theanorc python experiments/ali_svhn.py

CelebA

$ THEANORC=theanorc python experiments/ali_celeba.py

Toy task

$ THEANORC=theanorc python experiments/ali_mixture.py
$ THEANORC=theanorc python experiments/gan_mixture.py

Evaluating the models

Samples

$ THEANORC=theanorc scripts/sample [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/sample ali_cifar10.tar

Interpolations

$ THEANORC=theanorc scripts/interpolate [which_dataset] [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/interpolate celeba ali_celeba.tar

Reconstructions

$ THEANORC=theanorc scripts/reconstruct [which_dataset] [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/reconstruct cifar10 ali_cifar10.tar

Semi-supervised learning on SVHN

First, preprocess the SVHN dataset with the learned ALI features:

$ THEANORC=theanorc scripts/preprocess_representations [main_loop.tar] [save_path.hdf5]

e.g.

$ THEANORC=theanorc scripts/preprocess_representations ali_svhn.tar ali_svhn_preprocessed.hdf5

Then, launch the semi-supervised script:

$ python experiments/semi_supervised_svhn.py ali_svhn.tar [save_path.hdf5]

e.g.

$ python experiments/semi_supervised_svhn.py ali_svhn_preprocessed.hdf5

[...]
Validation error rate = ... +- ...
Test error rate = ... +- ...

Toy task

$ THEANORC=theanorc scripts/generate_mixture_plots [ali_main_loop.tar] [gan_main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/generate_mixture_plots ali_mixture.tar gan_mixture.tar
Comments
  • Conditional Generation

    Conditional Generation

    I'm interested in getting the update to this codebase that includes the conditional generation, as covered in the more recent version of the paper (related image below). Can you let me know if that will be added to the repo? celeba_conditional_sequence

    opened by dribnet 8
  • mistake in D(x,z) input size

    mistake in D(x,z) input size

    In table 5 from the paper you state that the input size for D(x,z) is 1024x1x1 which I think it's wrong after looking at the previous output sizes D(x) and D(z). I think that should be 1536x1x1.

    Is that assumption correct?

    opened by edgarriba 5
  • deserialization of models hangs

    deserialization of models hangs

    Training goes well for me using the scripts in experiments with the latest version of blocks, but then when I run any subsequent command that uses the generated model like scripts/sample or scripts/reconstruct, the command hangs indefinitely. My guess is that the deserialization is getting jammed up.

    I can look into it more - not yet familiar with the new tar format - but curious if this might be a known issue.

    opened by dribnet 3
  • Fuel version problem

    Fuel version problem

    I installed the current development version of fuel, but had some issue in fuel downloading.

    $ fuel-download celeba 64 $ fuel-convert celeba 64 $ fuel-download celeba 64 --clear

    The error message I got is: fuel-download: error: unrecognized arguments: 64 if I remove 64, I got: TypeError: init() got an unexpected keyword argument 'max_value'

    Could someone please specify what version or commits of fuel and progressbar should I use? Thanks

    opened by hope-yao 1
  • Where to use the reparametrization trick

    Where to use the reparametrization trick

    In the decoder module. I found that z is sampled from N(0, 1), so where did you use the reparametrization trick described in formual (2) and (3) in the paper

    opened by wuhaozhe 0
  • semi-supervised learning

    semi-supervised learning

    Hello,I read the paper and the source code.And it mentioned 'The last three hidden layers of the encoder as well as its output are concatenated to form a 8960-dimensional feature vector.' in section 4.3 of the paper.Could you please tell me how to compute the dimension?Thanks very much

    opened by C-xiaomeng 1
  • ImportError: No module named ali.utils

    ImportError: No module named ali.utils

    I followed the same steps in the readme file, but when I run this line

    $ THEANORC=theanorc python experiments/ali_cifar10.py

    I get:

    Traceback (most recent call last):
      File "experiments/ali_cifar10.py", line 3, in <module>
        from ali.utils import get_log_odds, conv_brick, conv_transpose_brick, bn_brick
    ImportError: No module named ali.utils
    
    opened by xtarx 0
  • Preprocess_representation has a bug for me

    Preprocess_representation has a bug for me

    Hi, I was trying to reproduce the representation learning results of paper. Everything works fine except "preprocess_representations" script. It is leading to this error:

    File "scripts/preprocess_representations", line 32, in preprocess_svhn bricks=[ali.encoder.layers[-9], ali.encoder.layers[-6], AttributeError: 'GaussianConditional' object has no attribute 'layers'

    Any help would be appreciated.

    opened by MarziEd 1
  • Semi-supervised learning

    Semi-supervised learning

    I've been trying to reproduce your figures for semi-supervised learning on CIFAR-10 (19.98% with 1000 labels). This result is based on the technique proposed in Salimans et al. (2016), not SVMs. Is there any way you can include your code, or at least any changes to the hyperparameters in ali_cifar10.py?

    Thanks in advance for your help.

    opened by christiancosgrove 7
Releases(v1)
Owner
Mohamed Ishmael Belghazi
Mohamed Ishmael Belghazi
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022