This repository is all about spending some time the with the original problem posed by Minsky and Papert

Overview

The Original Problem

Computer Vision has a very interesting history. It's roots really go all the way back to the beginning of computing and Artifical Intelligence. In these early days, it was unknown just how easy or difficult it would be to recreate the function of the human visual system. A great example of this is the 1966 MIT Summer Vision Project. Marvin Minsky and Seymour Papert, co-directors of the MIT AI Labratory, begun the summer with some ambitious goals:

Minsky and Papert assigned Gerald Sussman, an MIT undergraduate studunt as project lead, and setup specific goals for the group around recognizing specific objects in images, and seperating these objects from their backgrounds.

Just how hard is it to acheive the goals Minsky and Papert laid out? How has the field of computer vision advance since that summer? Are these tasks trivial now, 50+ years later? Do we understand how the human visual system works? Just how hard is computer vision and how far have we come?

This Repository

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

The repository is broadly divided into two areas: notebooks and a programming challenge. The programming challenge is described in more detail below, and closely follows the goals setup by Minsky and Papert back in 1966. The notebooks are here to give you some help along the way.

Notebooks

Section Notebook Required Reading/Viewing Additional Reading/Viewing Code Developed
1 The Original Problem The Summer Vision Project - -
2 Robert's Cross Only Abstact and Pages 25-27 - Machine perception of 3d solids - convert_to_grayscale, roberts_cross
3 Image Filtering How Blurs & Filters Work - Computerphile - make_gaussian_kernel, filter_2d
4 The Sobel–Feldman Operator Finding the Edges (Sobel Operator) - Computerphile History of Sobel -
5 The Hough Transform [Part 1] Pattern classification Section 9.2.3, Bubble Chamber Video -
6 The Hough Transform [Part 2] How the Hough Transform was Invented Use of the Hough transformation to detect lines and curves in pictures. HoughAccumulator

Viewing Notebooks

The links in the table above take you to externally hosted HTML exports of the notebooks. This works pretty well, except html won't render embedded slide shows unfortunately. The best way to view the notebooks is to clone this repo and run them yourself! Checkout the setup instructions below.

Animations

The notebooks in this repository make frequent use of gif animations. These files are pretty large, so we don't store them on github, and they unfortunately won't show up when viewing the notebooks via github. The ideal way to view the notebooks is to clone the repo, download the videos, and use the recommended jupyterthemes below. Instructions on downloading videos are below.

Note on Launching the Jupyter Notebooks

To properly view the images and animations, please launch your jupyter notebook from the root directory of this repository.

Programming Challenge

Instructions

  • Write a method classify.py that takes in an image and returns a prediction - ball, brick, or cylinder.
  • An example script in located in challenge/sample_student.py
  • Your script will be automatically evaluated on a set of test images.
  • The testing images are quite similar to the training images, and organized into the same difficulty categories.
  • You are allowed 10 submissions to the evaluation server, which will provide immediate feedback.

The Data

Easy Examples

Grading

Following the progression set out the MIT the summer project, we'll start with easy images, and move to more difficult image with more complex backgrounds as we progress. For each difficulty level, we will compute the average accuracy of your classifier. We will then compute an average overall accuracy, weighting easier examples more:

overall_accuracy = 0.5*accuracy_easy 
                 + 0.2*accuracy_medium_1 
                 + 0.2*accuracy_medium_2 
                 + 0.1*accuracy_hard 
Overall Accuracy Points
>= 0.6 10/10
0.55 <= a < 0.6 9/10
0.5 <= a < 0.55 8/10
0.45 <= a < 0.5 7/10
0.40 <= a < 0.45 6/10
0.35 <= a < 0.40 5/10
a < 0.35 4/10
Non-running code 0/10

A quick note on difficulty

Depending on your background, this challenge may feel a bit like getting thrown into the deep end. If it feels a bit daunting - that's ok! Half of the purpose of this assignement is to help you develop an appreciation for why computer vision is so hard. As you may have already guessed, Misky, Sussman, and Papert did not reach their summer goals - and I'm not expecting you to either. The grading table above reflects this - for example, if you're able to get 90% accuracy on the easy examples, and simply guess randomly on the rest of the examples, you'll earn 10/10 points.

Setup

The Python 3 Anaconda Distribution is the easiest way to get going with the notebooks and code presented here.

(Optional) You may want to create a virtual environment for this repository:

conda create -n cv python=3 
source activate cv

You'll need to install the jupyter notebook to run the notebooks:

conda install jupyter

# You may also want to install nb_conda (Enables some nice things like change virtual environments within the notebook)
conda install nb_conda

This repository requires the installation of a few extra packages, you can install them all at once with:

pip install -r requirements.txt

(Optional) jupyterthemes can be nice when presenting notebooks, as it offers some cleaner visual themes than the stock notebook, and makes it easy to adjust the default font size for code, markdown, etc. You can install with pip:

pip install jupyterthemes

Recommend jupyter them for presenting these notebook (type into terminal before launching notebook):

jt -t grade3 -cellw=90% -fs=20 -tfs=20 -ofs=20 -dfs=20

Recommend jupyter them for viewing these notebook (type into terminal before launching notebook):

jt -t grade3 -cellw=90% -fs=14 -tfs=14 -ofs=14 -dfs=14

Downloading Data

For larger files such as data and videos, I've provided download scripts to download these files from welchlabs.io. These files can be pretty big, so you may want to grab a cup of your favorite beverage to enjoy while downloading. The script can be run from within the jupyter notebooks or from the terminal:

python util/get_and_unpack.py -url http://www.welchlabs.io/unccv/the_original_problem/data/data.zip

Alternatively, you can download download data manually, unzip and place in this directory.

Downloading Videos

Run the script below or call it from the notebooks:

python util/get_and_unpack.py -url http://www.welchlabs.io/unccv/the_original_problem/videos.zip

Alternatively, you can download download videos manually, unzip and place in this directory.

Owner
Jaissruti Nanthakumar
Master's in Computer Science | University of North Carolina at Charlotte
Jaissruti Nanthakumar
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023