MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Overview

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Codes for the following paper:

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, James Tompkin
ECCV 2020

High-level overview of approach.

See more at our project page.

If you use these codes, please cite:

@inproceedings{Attal:2020:ECCV,
    author    = "Benjamin Attal and Selena Ling and Aaron Gokaslan and Christian Richardt and James Tompkin",
    title     = "{MatryODShka}: Real-time {6DoF} Video View Synthesis using Multi-Sphere Images",
    booktitle = "European Conference on Computer Vision (ECCV)",
    month     = aug,
    year      = "2020",
    url       = "https://visual.cs.brown.edu/matryodshka"
}

Note that our codes are based on the code from the paper "Stereo Maginification: Learning View Synthesis using Multiplane Images" by Zhou et al. [1], and on the code from the paper "Pixel2mesh: Generating 3D Mesh Models from Single RGB Images." by Wang et al. [3]. Please also cite their work.

Setup

  • Create a conda environment from the matryodshka-gpu.yml file.
  • Run ./download_glob.sh to download the files needed for training and testing.
  • Download the dataset as in Section Replica dataset.

Training the model

See train.py for training the model.

  • To train with transform inverse regularization, use --transform_inverse_reg flag.

  • To train with CoordNet, use --coord_net flag.

  • To experiment with different losses (elpips or l2), use --which_loss flag.

    • To train with spherical weighting on loss maps, use --spherical_attention flag.
  • To train with graph convolution network (GCN), use --gcn flag. Note the particular GCN architecture definition we used is from the Pixel2Mesh repo [3].

  • The current scripts support training on Replica 360 and cubemap dataset and RealEstate10K dataset. Use --input_type to switch between these types of inputs (ODS, PP, REALESTATE_PP).

See scripts/train/*.sh for some sample scripts.

Testing the model

See test.py for testing the model with replica-360 test set.

  • When testing on video frames, e.g. test_video_640x320, include on_video in --test_type flag.
  • When testing on high-resolution images, include high_res in --test_type flag.

See scripts/test/*.sh for sample scripts.

Evaluation

See eval.py for evaluating the model, which saves the metric scores into a json file. We evaluate our models on

  • third-view reconstruction quality

    • See scripts/eval/*-reg.sh for a sample script.
  • frame-to-frame reconstruction differences on video sequences to evaluate the effect of transform inverse regularization on temporal consistency.

    • Include on_video when specifying the --eval_type flag.
    • See scripts/eval/*-video.sh for a sample script.

Pre-trained model

Download models pre-trained with and without transform inverse regularization by running ./download_model.sh. These can also be found here at the Brown library for archival purposes.

Replica dataset

We rendered a 360 and a cubemap dataset for training from the Facebook Replica Dataset [2]. This data can be found here at the Brown library for archival purposes. You should have access to the following datasets.

  • train_640x320
  • test_640x320
  • test_video_640x320

You can also find the camera pose information here that were used to render the training dataset. Each line of the txt fileach line of the txt file is formatted as below:

camera_position_x camera_position_y camera_position_z ods_baseline target1_offset_x target1_offset_y target1_offset_z target2_offset_x target2_offset_y target2_offset_z target3_offset_x target3_offset_y target3_offset_z

We also have a fork of the Replica dataset codebase which can regenerate our data from scratch. This contains customized rendering scripts that allow output of ODS, equirectangular, and cubemap projection spherical imagery, along with corresponding depth maps.

Note that the 360 dataset we release for download was rendered with an incorrect 90-degree camera rotation around the up vector and a horizontal flip. Regenerating the dataset from our released code fork with the customized rendering scripts will not include this coordinate change. The output model performance should be approximately the same.

Exporting the model to ONNX

We export our model to ONNX by firstly converting the checkpoint into a pb file, which then gets converted to an onnx file with the tf2onnx module. See export.py for exporting the model into .pb file.

See scripts/export/model-name.sh for a sample script to run export.py, and scripts/export/pb2onnx.sh for a sample script to run pb-to-onnx conversion.

Unity Application + ONNX to TensorRT Conversion

We are still working on releasing the real-time Unity application and onnx2trt conversion scripts. Please bear with us!

References

[1] Zhou, Tinghui, et al. "Stereo magnification: Learning view synthesis using multiplane images." arXiv preprint arXiv:1805.09817 (2018). https://github.com/google/stereo-magnification

[2] Straub, Julian, et al. "The Replica dataset: A digital replica of indoor spaces." arXiv preprint arXiv:1906.05797 (2019). https://github.com/facebookresearch/Replica-Dataset

[3] Wang, Nanyang, et al. "Pixel2mesh: Generating 3d mesh models from single rgb images." Proceedings of the European Conference on Computer Vision (ECCV). 2018. https://github.com/nywang16/Pixel2Mesh

Owner
Brown University Visual Computing Group
Brown University Visual Computing Group
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023