MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Overview

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Codes for the following paper:

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, James Tompkin
ECCV 2020

High-level overview of approach.

See more at our project page.

If you use these codes, please cite:

@inproceedings{Attal:2020:ECCV,
    author    = "Benjamin Attal and Selena Ling and Aaron Gokaslan and Christian Richardt and James Tompkin",
    title     = "{MatryODShka}: Real-time {6DoF} Video View Synthesis using Multi-Sphere Images",
    booktitle = "European Conference on Computer Vision (ECCV)",
    month     = aug,
    year      = "2020",
    url       = "https://visual.cs.brown.edu/matryodshka"
}

Note that our codes are based on the code from the paper "Stereo Maginification: Learning View Synthesis using Multiplane Images" by Zhou et al. [1], and on the code from the paper "Pixel2mesh: Generating 3D Mesh Models from Single RGB Images." by Wang et al. [3]. Please also cite their work.

Setup

  • Create a conda environment from the matryodshka-gpu.yml file.
  • Run ./download_glob.sh to download the files needed for training and testing.
  • Download the dataset as in Section Replica dataset.

Training the model

See train.py for training the model.

  • To train with transform inverse regularization, use --transform_inverse_reg flag.

  • To train with CoordNet, use --coord_net flag.

  • To experiment with different losses (elpips or l2), use --which_loss flag.

    • To train with spherical weighting on loss maps, use --spherical_attention flag.
  • To train with graph convolution network (GCN), use --gcn flag. Note the particular GCN architecture definition we used is from the Pixel2Mesh repo [3].

  • The current scripts support training on Replica 360 and cubemap dataset and RealEstate10K dataset. Use --input_type to switch between these types of inputs (ODS, PP, REALESTATE_PP).

See scripts/train/*.sh for some sample scripts.

Testing the model

See test.py for testing the model with replica-360 test set.

  • When testing on video frames, e.g. test_video_640x320, include on_video in --test_type flag.
  • When testing on high-resolution images, include high_res in --test_type flag.

See scripts/test/*.sh for sample scripts.

Evaluation

See eval.py for evaluating the model, which saves the metric scores into a json file. We evaluate our models on

  • third-view reconstruction quality

    • See scripts/eval/*-reg.sh for a sample script.
  • frame-to-frame reconstruction differences on video sequences to evaluate the effect of transform inverse regularization on temporal consistency.

    • Include on_video when specifying the --eval_type flag.
    • See scripts/eval/*-video.sh for a sample script.

Pre-trained model

Download models pre-trained with and without transform inverse regularization by running ./download_model.sh. These can also be found here at the Brown library for archival purposes.

Replica dataset

We rendered a 360 and a cubemap dataset for training from the Facebook Replica Dataset [2]. This data can be found here at the Brown library for archival purposes. You should have access to the following datasets.

  • train_640x320
  • test_640x320
  • test_video_640x320

You can also find the camera pose information here that were used to render the training dataset. Each line of the txt fileach line of the txt file is formatted as below:

camera_position_x camera_position_y camera_position_z ods_baseline target1_offset_x target1_offset_y target1_offset_z target2_offset_x target2_offset_y target2_offset_z target3_offset_x target3_offset_y target3_offset_z

We also have a fork of the Replica dataset codebase which can regenerate our data from scratch. This contains customized rendering scripts that allow output of ODS, equirectangular, and cubemap projection spherical imagery, along with corresponding depth maps.

Note that the 360 dataset we release for download was rendered with an incorrect 90-degree camera rotation around the up vector and a horizontal flip. Regenerating the dataset from our released code fork with the customized rendering scripts will not include this coordinate change. The output model performance should be approximately the same.

Exporting the model to ONNX

We export our model to ONNX by firstly converting the checkpoint into a pb file, which then gets converted to an onnx file with the tf2onnx module. See export.py for exporting the model into .pb file.

See scripts/export/model-name.sh for a sample script to run export.py, and scripts/export/pb2onnx.sh for a sample script to run pb-to-onnx conversion.

Unity Application + ONNX to TensorRT Conversion

We are still working on releasing the real-time Unity application and onnx2trt conversion scripts. Please bear with us!

References

[1] Zhou, Tinghui, et al. "Stereo magnification: Learning view synthesis using multiplane images." arXiv preprint arXiv:1805.09817 (2018). https://github.com/google/stereo-magnification

[2] Straub, Julian, et al. "The Replica dataset: A digital replica of indoor spaces." arXiv preprint arXiv:1906.05797 (2019). https://github.com/facebookresearch/Replica-Dataset

[3] Wang, Nanyang, et al. "Pixel2mesh: Generating 3d mesh models from single rgb images." Proceedings of the European Conference on Computer Vision (ECCV). 2018. https://github.com/nywang16/Pixel2Mesh

Owner
Brown University Visual Computing Group
Brown University Visual Computing Group
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022