A Simulated Optimal Intrusion Response Game

Overview

Optimal Intrusion Response

An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated using system traces.

Included Environments

  • optimal-intrusion-response-v1
  • optimal-intrusion-response-v2
  • optimal-intrusion-response-v3

Requirements

  • Python 3.5+
  • OpenAI Gym
  • NumPy
  • jsonpickle (for configuration files)
  • torch (for baseline algorithms)

Installation

# install from pip
pip install gym-optimal-intrusion-response==1.0.0
# local install from source
$ pip install -e gym-optimal-intrusion-response
# force upgrade deps
$ pip install -e gym-optimal-intrusion-response --upgrade

# git clone and install from source
git clone https://github.com/Limmen/gym-optimal-intrusion-response
cd gym-optimal-intrusion-response
pip3 install -e .

Usage

The environment can be accessed like any other OpenAI environment with gym.make. Once the environment has been created, the API functions step(), reset(), render(), and close() can be used to train any RL algorithm of your preference.

import gym
from gym_idsgame.envs import IdsGameEnv
env_name = "optimal-intrusion-response-v1"
env = gym.make(env_name)

Infrastructure

Traces

Alert/login traces from the emulated infrastructure are available in (./traces).

Publications

@INPROCEEDINGS{hammar_stadler_cnsm_21,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Learning Intrusion Prevention Policies through Optimal Stopping",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2021)",
ADDRESS="Izmir, Turkey",
DAYS=1,
YEAR=2021,
note={\url{http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf}},
KEYWORDS="Network Security, automation, optimal stopping, reinforcement learning, Markov Decision Processes",
ABSTRACT="We study automated intrusion prevention using reinforcement learning. In a novel approach, we formulate the problem of intrusion prevention as an optimal stopping problem. This formulation allows us insight into the structure of the optimal policies, which turn out to be threshold based. Since the computation of the optimal defender policy using dynamic programming is not feasible for practical cases, we approximate the optimal policy through reinforcement learning in a simulation environment. To define the dynamics of the simulation, we emulate the target infrastructure and collect measurements. Our evaluations show that the learned policies are close to optimal and that they indeed can be expressed using thresholds."
}
@INPROCEEDINGS{Hamm2011:Finding,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Finding Effective Security Strategies through Reinforcement Learning and
{Self-Play}",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2020)
(CNSM 2020)",
ADDRESS="Izmir, Turkey",
DAYS=1,
MONTH=nov,
YEAR=2020,
KEYWORDS="Network Security; Reinforcement Learning; Markov Security Games",
ABSTRACT="We present a method to automatically find security strategies for the use
case of intrusion prevention. Following this method, we model the
interaction between an attacker and a defender as a Markov game and let
attack and defense strategies evolve through reinforcement learning and
self-play without human intervention. Using a simple infrastructure
configuration, we demonstrate that effective security strategies can emerge
from self-play. This shows that self-play, which has been applied in other
domains with great success, can be effective in the context of network
security. Inspection of the converged policies show that the emerged
policies reflect common-sense knowledge and are similar to strategies of
humans. Moreover, we address known challenges of reinforcement learning in
this domain and present an approach that uses function approximation, an
opponent pool, and an autoregressive policy representation. Through
evaluations we show that our method is superior to two baseline methods but
that policy convergence in self-play remains a challenge."
}
@misc{hammar2021intrusion,
      title={Intrusion Prevention through Optimal Stopping}, 
      author={Kim Hammar and Rolf Stadler},
      year={2021},
      eprint={2111.00289},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

See also

Author & Maintainer

Kim Hammar [email protected]

Copyright and license

LICENSE

Creative Commons

(C) 2021, Kim Hammar

You might also like...
 Simulated garment dataset for virtual try-on
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely optimal running in ~15s to ~30s for search spaces as big as 10000000 nodes where a set of 18 actions could be performed at each node in the 3D Maze.

Comments
  • gym-optimal-intrusion-response cannot gym.make

    gym-optimal-intrusion-response cannot gym.make

    After I installed gym-optimal-intrusion-response

    # git clone and install from source git clone https://github.com/Limmen/gym-optimal-intrusion-response cd gym-optimal-intrusion-response pip3 install -e .

    I use it by

    import gym from gym_idsgame.envs import IdsGameEnv env_name = "optimal-intrusion-response-v1" env = gym.make(env_name)

    but I had a problem

    gym.error.UnregisteredEnv: No registered env with id: optimal-intrusion-response-v1

    opened by wangzepeng111 4
  • May I ask you for how to start this project?

    May I ask you for how to start this project?

    I had read your paper Learning Intrusion Prevention Policies through Optimal Stopping, and have some problems,such as the defender policy against NOISYATTACKER and STEALTHYATTACKER, I don't know how it works. And your code import gym_pycr_ctf but I can't find this function

    opened by Arashiailing 2
Releases(1.0.0)
Owner
Kim Hammar
PhD @KTH, ML, Distributed systems, security & stuff. Previously @logicalclocks, Allstate, Ericsson.
Kim Hammar
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023