A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

Overview

ManhattanSLAM

Authors: Raza Yunus, Yanyan Li and Federico Tombari

ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera pose trajectory, a sparse 3D reconstruction (containing point, line and plane features) and a dense surfel-based 3D reconstruction. Further details can be found in the related publication. The code is based on ORB-SLAM2.

ManhattanSLAM

Related Publication:

Raza Yunus, Yanyan Li and Federico Tombari, ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging Mixture of Manhattan Frames, in 2021 IEEE International Conference on Robotics and Automation (ICRA) . PDF.

1. License

ManhattanSLAM is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please see Dependencies.md.

If you use ManhattanSLAM in an academic work, please cite:

@inproceedings{yunus2021manhattanslam,
    author = {R. Yunus, Y. Li and F. Tombari},
    title = {ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging Mixture of Manhattan Frames},
    year = {2021},
    booktitle = {2021 IEEE international conference on Robotics and automation (ICRA)},
}

2. Prerequisites

We have tested the library in Ubuntu 16.04, but it should be easy to compile on other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results. Following is the list of dependecies for ManhattanSLAM and their versions tested by us:

  • OpenCV: 3.3.0
  • PCL: 1.7.2
  • Eigen3: 3.3
  • DBoW2: Included in Thirdparty folder
  • g2o: Included in Thirdparty folder
  • Pangolin
  • tinyply

3. Building and testing

Clone the repository:

git clone https://github.com/razayunus/ManhattanSLAM

There is a script build.sh to build the Thirdparty libraries and ManhattanSLAM. Please make sure you have installed all required dependencies (see section 2). Execute:

cd ManhattanSLAM
chmod +x build.sh
./build.sh

This will create libManhattanSLAM.so in lib folder and the executable manhattan_slam in Example folder.

To test the system:

  1. Download a sequence for one of the following datasets and uncompress it:

  2. Associate RGB images and depth images using the python script associate.py. You can generate an associations file by executing:

python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
  1. Execute the following command. Change Config.yaml to ICL.yaml for ICL-NUIM sequences, TAMU.yaml for TAMU RGB-D sequences or TUM1.yaml, TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences of TUM RGB-D respectively. Change PATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder. Change ASSOCIATIONS_FILE to the path to the corresponding associations file.
./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/Config.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022