A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

Overview

ManhattanSLAM

Authors: Raza Yunus, Yanyan Li and Federico Tombari

ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera pose trajectory, a sparse 3D reconstruction (containing point, line and plane features) and a dense surfel-based 3D reconstruction. Further details can be found in the related publication. The code is based on ORB-SLAM2.

ManhattanSLAM

Related Publication:

Raza Yunus, Yanyan Li and Federico Tombari, ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging Mixture of Manhattan Frames, in 2021 IEEE International Conference on Robotics and Automation (ICRA) . PDF.

1. License

ManhattanSLAM is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please see Dependencies.md.

If you use ManhattanSLAM in an academic work, please cite:

@inproceedings{yunus2021manhattanslam,
    author = {R. Yunus, Y. Li and F. Tombari},
    title = {ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging Mixture of Manhattan Frames},
    year = {2021},
    booktitle = {2021 IEEE international conference on Robotics and automation (ICRA)},
}

2. Prerequisites

We have tested the library in Ubuntu 16.04, but it should be easy to compile on other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results. Following is the list of dependecies for ManhattanSLAM and their versions tested by us:

  • OpenCV: 3.3.0
  • PCL: 1.7.2
  • Eigen3: 3.3
  • DBoW2: Included in Thirdparty folder
  • g2o: Included in Thirdparty folder
  • Pangolin
  • tinyply

3. Building and testing

Clone the repository:

git clone https://github.com/razayunus/ManhattanSLAM

There is a script build.sh to build the Thirdparty libraries and ManhattanSLAM. Please make sure you have installed all required dependencies (see section 2). Execute:

cd ManhattanSLAM
chmod +x build.sh
./build.sh

This will create libManhattanSLAM.so in lib folder and the executable manhattan_slam in Example folder.

To test the system:

  1. Download a sequence for one of the following datasets and uncompress it:

  2. Associate RGB images and depth images using the python script associate.py. You can generate an associations file by executing:

python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
  1. Execute the following command. Change Config.yaml to ICL.yaml for ICL-NUIM sequences, TAMU.yaml for TAMU RGB-D sequences or TUM1.yaml, TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences of TUM RGB-D respectively. Change PATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder. Change ASSOCIATIONS_FILE to the path to the corresponding associations file.
./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/Config.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022