Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Related tags

Deep LearningStarQE
Overview

Query Embedding on Hyper-Relational Knowledge Graphs

This repository contains the code used for the experiments in the paper

Query Embedding on Hyper-Relational Knowledge Graphs.
Dimitrios Alivanistos and Max Berrendorf and Michael Cochez and Mikhail Galkin

If you encounter any problems, or have suggestions on how to improve this code, open an issue.

Abstract: Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

Requirements

We developed our repository using Python 3.8.5. Other version may also work.

First, please ensure that you have properly installed

in your environment. Running experiments is possible on both CPU and GPU. On a GPU, the training should go noticeably faster. If you are using GPU, please make sure that the installed versions match your CUDA version.

We recommend the use of virtual environments, be it virtualenv or conda.

Now, clone the repository and install other dependencies using pip. After moving to the root of the repo (and with your virtual env activated) type:

pip install .

If you want to change code, we suggest to use the editable mode of the pip installation:

pip install -e .

To log results, we suggest using wandb. Instructions on installation and setting up can be found here: https://docs.wandb.ai/quickstart

Running test (optional)

You can run the tests by installing the test dependencies

pip install -e '.[test]'

and then executing them

pytest

Both from the root of the project.

It is normal that you see some skipped tests.

Running experiments

The easiest way to start experiments is via the command line interface. The command line also provides more information on the options available for each command. You can show the help it by typing

hqe --help

into a terminal within your active python environment. Some IDEs, e.g. PyCharm, require you to start from a file if you want to enable the debugger. To this end, we also provide a thin wrapper in executables, which you can start by

python executables/main.py

Downloading the data

To run experiments, we offer the preprocessed queries for download. It is also possible to run the preprocessing steps yourself, cf. the data preprocessing README, using the following command

hqe preprocess skip-and-download-binary

Training a model

There are many options are available for model training. For an overview of options, run

hqe train --help

Some examples:


Train with default settings, using 10000 reified 1hop queries with a qualifier and use 5000 reified triples from the validation set. Details on how to specify the amount of samples can be found in [src/mphrqe/data/loader.Sample](the Sample class). Note that the data loading is taking care of only using data from the correct data split.

hqe train \
    -tr /1hop/1qual:atmost10000:reify \
    -va /1hop/1qual:5000:reify

Train with the same data, but with custom parameters for the model. The example below uses target pooling to get the embedding of the query graph, uses a dropout of 0.5 in the layers, uses cosine similarity instead of the dot product to compute similarity when ranking answers to the query, and enables wandb for logging the metrics. Finally, the trained model is stored as a file training-example-model.pt which then be used in the evaluation.

hqe train \
    -tr /1hop/1qual:atmost10000:reify \
    -va /1hop/1qual:5000:reify \
    --graph-pooling TargetPooling \
    --dropout 0.5 \
    --similarity CosineSimilarity \
    --use-wandb --wandb-name "training-example" \
    --save \
    --model-path "training-example-model.pt"

By default, the model path is relative to the current working directory. Providing an absolute path to a different directory can change that.

Performing hyper parameter optimization

To find optimal parameters for a dataset, one can run a hyperparameter optimization. Under the hood this is using the optuna framework.

All options for the hyperparameter optimization can be seen with

hqe optimize --help

Some examples:


Run hyper-parameter optimization. This will result in a set of runs with different hyper-parameters from which the user can pick the best.

hqe optimize \
    -tr "/1hop/1qual-per-triple:*" \
    -tr "/2i/1qual-per-triple:atmost40000" \
    -tr "/2hop/1qual-per-triple:40000" \
    -tr "/3hop/1qual-per-triple:40000" \
    -tr "/3i/1qual-per-triple:40000" \
    -va "/1hop/1qual-per-triple:atmost3500" \
    -va "/2i/1qual-per-triple:atmost3500" \
    -va "/2hop/1qual-per-triple:atmost3500" \
    -va "/3hop/1qual-per-triple:atmost3500" \
    -va "/3i/1qual-per-triple:atmost3500" \
    --use-wandb \
    --wandb-name "hpo-query2box-style"

Evaluating model performance

To evaluate a model's performance on the test set, we provide an example below:

hqe evaluate \
    --test-data "/1hop/1qual:5000:reify" \
    --use-wandb \
    --wandb-name "test-example" \
    --model-path "training-example-model.pt"

Citation

If you find this work useful, please consider citing

@misc{alivanistos2021query,
      title={Query Embedding on Hyper-relational Knowledge Graphs}, 
      author={Dimitrios Alivanistos and Max Berrendorf and Michael Cochez and Mikhail Galkin},
      year={2021},
      eprint={2106.08166},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • bug in SPARQL for 1hop-2i/0qual

    bug in SPARQL for 1hop-2i/0qual

    It looks like the SPARQL is not executable. should line 37 in test/validation and line 22 in train: FILTER ((?s1 != ?o2_s0) || (?s1 = ?o2_s0 && str(?p0)< str(?1) )) be FILTER ((?s1 != ?o2_s0) || (?s1 = ?o2_s0 && str(?p0)< str(?p1) )) ?

    opened by Kelaproth 2
Releases(v1.0.0-iclr)
Owner
DimitrisAlivas
Researcher. Data scientist. Passionate about Tech & AI
DimitrisAlivas
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022