Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Related tags

Deep LearningStarQE
Overview

Query Embedding on Hyper-Relational Knowledge Graphs

This repository contains the code used for the experiments in the paper

Query Embedding on Hyper-Relational Knowledge Graphs.
Dimitrios Alivanistos and Max Berrendorf and Michael Cochez and Mikhail Galkin

If you encounter any problems, or have suggestions on how to improve this code, open an issue.

Abstract: Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

Requirements

We developed our repository using Python 3.8.5. Other version may also work.

First, please ensure that you have properly installed

in your environment. Running experiments is possible on both CPU and GPU. On a GPU, the training should go noticeably faster. If you are using GPU, please make sure that the installed versions match your CUDA version.

We recommend the use of virtual environments, be it virtualenv or conda.

Now, clone the repository and install other dependencies using pip. After moving to the root of the repo (and with your virtual env activated) type:

pip install .

If you want to change code, we suggest to use the editable mode of the pip installation:

pip install -e .

To log results, we suggest using wandb. Instructions on installation and setting up can be found here: https://docs.wandb.ai/quickstart

Running test (optional)

You can run the tests by installing the test dependencies

pip install -e '.[test]'

and then executing them

pytest

Both from the root of the project.

It is normal that you see some skipped tests.

Running experiments

The easiest way to start experiments is via the command line interface. The command line also provides more information on the options available for each command. You can show the help it by typing

hqe --help

into a terminal within your active python environment. Some IDEs, e.g. PyCharm, require you to start from a file if you want to enable the debugger. To this end, we also provide a thin wrapper in executables, which you can start by

python executables/main.py

Downloading the data

To run experiments, we offer the preprocessed queries for download. It is also possible to run the preprocessing steps yourself, cf. the data preprocessing README, using the following command

hqe preprocess skip-and-download-binary

Training a model

There are many options are available for model training. For an overview of options, run

hqe train --help

Some examples:


Train with default settings, using 10000 reified 1hop queries with a qualifier and use 5000 reified triples from the validation set. Details on how to specify the amount of samples can be found in [src/mphrqe/data/loader.Sample](the Sample class). Note that the data loading is taking care of only using data from the correct data split.

hqe train \
    -tr /1hop/1qual:atmost10000:reify \
    -va /1hop/1qual:5000:reify

Train with the same data, but with custom parameters for the model. The example below uses target pooling to get the embedding of the query graph, uses a dropout of 0.5 in the layers, uses cosine similarity instead of the dot product to compute similarity when ranking answers to the query, and enables wandb for logging the metrics. Finally, the trained model is stored as a file training-example-model.pt which then be used in the evaluation.

hqe train \
    -tr /1hop/1qual:atmost10000:reify \
    -va /1hop/1qual:5000:reify \
    --graph-pooling TargetPooling \
    --dropout 0.5 \
    --similarity CosineSimilarity \
    --use-wandb --wandb-name "training-example" \
    --save \
    --model-path "training-example-model.pt"

By default, the model path is relative to the current working directory. Providing an absolute path to a different directory can change that.

Performing hyper parameter optimization

To find optimal parameters for a dataset, one can run a hyperparameter optimization. Under the hood this is using the optuna framework.

All options for the hyperparameter optimization can be seen with

hqe optimize --help

Some examples:


Run hyper-parameter optimization. This will result in a set of runs with different hyper-parameters from which the user can pick the best.

hqe optimize \
    -tr "/1hop/1qual-per-triple:*" \
    -tr "/2i/1qual-per-triple:atmost40000" \
    -tr "/2hop/1qual-per-triple:40000" \
    -tr "/3hop/1qual-per-triple:40000" \
    -tr "/3i/1qual-per-triple:40000" \
    -va "/1hop/1qual-per-triple:atmost3500" \
    -va "/2i/1qual-per-triple:atmost3500" \
    -va "/2hop/1qual-per-triple:atmost3500" \
    -va "/3hop/1qual-per-triple:atmost3500" \
    -va "/3i/1qual-per-triple:atmost3500" \
    --use-wandb \
    --wandb-name "hpo-query2box-style"

Evaluating model performance

To evaluate a model's performance on the test set, we provide an example below:

hqe evaluate \
    --test-data "/1hop/1qual:5000:reify" \
    --use-wandb \
    --wandb-name "test-example" \
    --model-path "training-example-model.pt"

Citation

If you find this work useful, please consider citing

@misc{alivanistos2021query,
      title={Query Embedding on Hyper-relational Knowledge Graphs}, 
      author={Dimitrios Alivanistos and Max Berrendorf and Michael Cochez and Mikhail Galkin},
      year={2021},
      eprint={2106.08166},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • bug in SPARQL for 1hop-2i/0qual

    bug in SPARQL for 1hop-2i/0qual

    It looks like the SPARQL is not executable. should line 37 in test/validation and line 22 in train: FILTER ((?s1 != ?o2_s0) || (?s1 = ?o2_s0 && str(?p0)< str(?1) )) be FILTER ((?s1 != ?o2_s0) || (?s1 = ?o2_s0 && str(?p0)< str(?p1) )) ?

    opened by Kelaproth 2
Releases(v1.0.0-iclr)
Owner
DimitrisAlivas
Researcher. Data scientist. Passionate about Tech & AI
DimitrisAlivas
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021