Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

Overview

CrossTeaching-SSOD

0. Introduction

Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

This repo includes training SSD300 and training Faster-RCNN-FPN on the Pascal VOC benchmark. The scripts about training SSD300 are based on ssd.pytorch (https://github.com/amdegroot/ssd.pytorch/). The scripts about training Faster-RCNN-FPN are based on the official Detectron2 repo (https://github.com/facebookresearch/detectron2/).

1. Environment

Python = 3.6.8

CUDA Version = 10.1

Pytorch Version = 1.6.0

detectron2 (for Faster-RCNN-FPN)

2. Prepare Dataset

Download and extract the Pascal VOC dataset.

For SSD300, specify the VOC_ROOT variable in data/voc0712.py and data/voc07_consistency.py as /home/username/dataset/VOCdevkit/

For Faster-RCNN-FPN, set the environmental variable in this way: export DETECTRON2_DATASETS=/home/username/dataset/VOCdevkit/

3. Instruction

3.1 Reproduce Table.1

Go into the SSD300 directory, then run the following scripts.

supervised training (VOC 07 labeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

supervised training (VOC 0712 labeled, without extra augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd0712.py --save_interval 12000

supervised training (VOC 07 labeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd_sup2.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd.py --save_interval 12000

supervised training (VOC 0712 labeled, with horizontal flip):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_csd_sup_0712.py --save_interval 12000

supervised training (VOC 07 labeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_isd_sup2.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_only_isd.py --save_interval 12000

supervised training (VOC 0712 labeled, with mix-up augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_isd_sup_0712.py --save_interval 12000

3.2 Reproduce Table.2

Go into the SSD300 directory, then run the following scripts.

supervised training (VOC 07 labeled, without augmentation):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_ssd.py --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (VOC 07 labeled + VOC 12 unlabeled, confidence threshold=0.8):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo39-0.8.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (random FP label, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo102.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use only TP, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo36.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use only TP, confidence threshold=0.8):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo36-0.8.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

self-labeling (use true label, confidence threshold=0.5):

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo32.py --resume weights/ssd300_12000.pth --ramp --save_interval 12000

Go into the detectron2 directory.

supervised training (VOC 07 labeled, go into VOC07-sup-bs16):

python3 train_net.py --num-gpus 8 --config configs/voc/voc07_voc12.yaml

self-labeling (VOC 07 labeled + VOC 12 unlabeled, go into VOC07-sup-VOC12-unsup-self-teaching-0.7):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

self-labeling (random FP label, go into VOC07-sup-VOC12-unsup-self-teaching-0.7-random-wrong):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

self-labeling (use true label, go into VOC07-sup-VOC12-unsup-self-teaching-0.7-only-correct):

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

3.3 Reproduce Table.3

Go into the SSD300 directory, then run the following scripts.

cross teaching

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo137.py --resume weights/ssd300_12000.pth --resume2 weights/default/ssd300_12000.2.pth --save_interval 12000 --ramp --ema_rate 0.99 --ema_step 10

cross teaching + mix-up augmentation

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 train_pseudo151.py --resume weights/ssd300_12000.pth --resume2 weights/default/ssd300_12000.2.pth --save_interval 12000 --ramp --ema_rate 0.99 --ema_step 10

Go into the detectron2/VOC07-sup-VOC12-unsup-cross-teaching directory.

cross teaching

python3 train_net.py --resume --num-gpus 8 --config configs/voc/voc07_voc12.yaml MODEL.WEIGHTS output/model_0005999.pth SOLVER.CHECKPOINT_PERIOD 18000

Owner
Bruno Ma
Phd candidate in NLPR in CASIA
Bruno Ma
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023