Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

Related tags

Deep LearningVOLT
Overview

**Codebase and data are uploaded in progress. **

VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly generate a vocabulary with suitable granularity for machine translation.

What's New:

  • July 2021: Support En-De translation, TED bilingual translation, and multilingual translation.
  • July 2021: Support subword-nmt tokenization.
  • July 2021: Support sentencepiece tokenization.

What's On-going:

  • Add translation training/evaluation codes.
  • Support classification tasks.
  • Support pip usage.

Features:

  • Efficient: CPU learning on one machine.
  • Simple: The core code is no more than 200 lines.
  • Easy-to-use: Support widely-used tokenization toolkits,subword-nmt and sentencepiece.
  • Flexible: User can customize their own tokenization rules.

Requirements and Installation

The required environments:

  • python 3.0
  • tqdm
  • mosedecoder
  • subword-nmt

To use VOLT and develop locally:

git clone https://github.com/Jingjing-NLP/VOLT/
cd VOLT
git clone https://github.com/moses-smt/mosesdecoder
git clone https://github.com/rsennrich/subword-nmt
pip3 install sentencepiece
pip3 install tqdm 

Usage

  • The first step is to get vocabulary candidates and tokenized texts. The sub-word vocabulary can be generated by subword-nmt and sentencepiece. Here are two examples:

    
    #Assume source_data is the file stroing data in the source language
    #Assume target_data is the file stroing data in the target language
    BPEROOT=subword-nmt
    size=30000 # the size of BPE
    cat source_data > training_data
    cat target_data >> training_data
    
    #subword-nmt style:
    mkdir bpeoutput
    BPE_CODE=code # the path to save vocabulary
    python3 $BPEROOT/learn_bpe.py -s $size  < training_data > $BPE_CODE
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < source_file > bpeoutput/source.file
    python3 $BPEROOT/apply_bpe.py -c $BPE_CODE < target_file > bpeoutput/source.file
    
    #sentencepiece style:
    mkdir spmout
    python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$size --character_coverage=1.0 --model_type=bpe
    #After this step, you will see spm.vocab and spm.model
    python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
    python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    
  • The second step is to run VOLT scripts. It accepts the following parameters:

    • --source_file: the file storing data in the source language.
    • --target_file: the file storing data in the target language.
    • --token_candidate_file: the file storing token candidates.
    • --max_number: the maximum size of the vocabulary generated by VOLT.
    • --interval: the search granularity in VOLT.
    • --loop_in_ot: the maximum interation loop in sinkhorn solution.
    • --tokenizer: which toolkit you use to get vocabulary. Only subword-nmt and sentencepiece are supported.
    • --size_file: the file to store the vocabulary size generated by VOLT.
    • --threshold: the threshold to decide which tokens are added into the final vocabulary from the optimal matrix. Less threshold means that less token candidates are dropped.
    #subword-nmt style
    python3 ../ot_run.py --source_file bpeoutput/source.file --target_file bpeoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file bpeoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer subword-nmt --size_file bpeoutput/size 
    #sentencepiece style
    python3 ../ot_run.py --source_file spmoutput/source.file --target_file spmoutput/target.file \
              --token_candidate_file $BPE_CODE \
              --vocab_file spmoutput/vocab --max_number 10000 --interval 1000  --loop_in_ot 500 --tokenizer sentencepiece --size_file spmoutput/size 
    
  • The third step is to use the generated vocabulary to tokenize your texts:

      #for subword-nmt toolkit
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < source_file > bpeoutput/source.file
      python3 $BPEROOT/apply_bpe.py -c bpeoutput/vocab < target_file > bpeoutput/source.file
    
      #for sentencepiece toolkit, here we only keep the optimal size
      best_size=$(cat spmoutput/size)
      python3 spm/spm_train.py --input=training_data --model_prefix=spm --vocab_size=$best_size --character_coverage=1.0 --model_type=bpe
    
      #After this step, you will see spm.vocab and spm.model
      python3 spm/spm_encoder.py --model spm.model --inputs source_data --outputs spmout/source_data --output_format piece
      python3 spm/spm_encoder.py --model spm.model --inputs target_data --outputs spmout/target_data --output_format piece
    

Examples

We have given several examples in path "examples/".

Datasets

The WMT-14 En-de translation data can be downloaed via the running scripts.

For TED, you can download at TED.

Citation

Please cite as:

@inproceedings{volt,
  title = {Vocabulary Learning via Optimal Transport for Neural Machine Translation},
  author= {Jingjing Xu and
               Hao Zhou and
               Chun Gan and
               Zaixiang Zheng and
               Lei Li},
  booktitle = {Proceedings of ACL 2021},
  year = {2021},
}
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022