Pytorch Lightning Implementation of SC-Depth Methods.

Overview

SC_Depth_pl:

This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video.

In the V1 (IJCV 2021 & NeurIPS 2019), we propose (i) geometry consistency loss for scale-consistent depth prediction over video and (ii) self-discovered mask for detecting and removing dynamic regions during training towards higher accuracy. We also validate the predicted depth in the Visual SLAM scenario.

In the V2 (TPMAI 2022), we propose auto-recitify network (ARN) to remove relative image rotation in hand-held camera captured videos, e.g., some indoor datasets. We show that the proposed ARN, which is self-supervised trained in an end-to-end fashion, greatly eases the training and significantly boosts the performance.

Install

conda create -n sc_depth_env python=3.6
conda activate sc_depth_env
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Dataset

We preprocess all existing video datasets to the following general video format for training and testing:

Dataset
  -Training
    --Scene0000
      ---*.jpg (list of images)
      ---cam.txt (3x3 intrinsic)
      ---depth (a folder containing gt depths, optional for validation)
    --Scene0001
    ...
    train.txt (containing training scene names)
    val.txt (containing validation scene names)
  -Testing
    --color (containg testing images)
    --depth (containg ground truth depths)

You can convert it by yourself (on your own video data) or download our pre-processed standard datasets:

[kitti_raw] [nyu]

Training

We provide "scripts/run_train.sh", which shows how to train on kitti and nyu.

Testing

We provide "scripts/run_test.sh", which shows how test on kitti and nyu.

Inference

We provide "scripts/run_inference.sh", which shows how to save depths (.npy) and visualization results (.jpg).

Pretrained models

We provide pretrained models on kitti and nyu datasets. You need to uncompress it and put it into "ckpt" folder. If you run the "scripts/run_test.sh" with the pretrained model (fix the path before running), you should get the following results:

[kitti_scv1_model]:

Models Abs Rel Sq Rel Log10 RMSE RMSE(log) Acc.1 Acc.2 Acc.3
resnet18 0.119 0.878 0.053 4.987 0.196 0.859 0.956 0.981

[nyu_scv2_model]:

Models Abs Rel Sq Rel Log10 RMSE RMSE(log) Acc.1 Acc.2 Acc.3
resnet18 0.142 0.112 0.061 0.554 0.186 0.808 0.951 0.987

References

SC-DepthV1:

Unsupervised Scale-consistent Depth Learning from Video (IJCV 2021)
Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Zhichao Li, Le Zhang, Chunhua Shen, Ming-Ming Cheng, Ian Reid [paper]

@article{bian2021ijcv, 
  title={Unsupervised Scale-consistent Depth Learning from Video}, 
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Li, Zhichao and Zhang, Le and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian}, 
  journal= {International Journal of Computer Vision (IJCV)}, 
  year={2021} 
}

which is an extension of previous conference version: Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video (NeurIPS 2019)
Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, Ian Reid [paper]

@inproceedings{bian2019neurips,
  title={Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video},
  author={Bian, Jiawang and Li, Zhichao and Wang, Naiyan and Zhan, Huangying and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year={2019}
}

SC-DepthV2:

Auto-Rectify Network for Unsupervised Indoor Depth Estimation (TPAMI 2022)
Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Tat-Jun Chin, Chunhua Shen, Ian Reid [paper]

@article{bian2021tpami, 
  title={Auto-Rectify Network for Unsupervised Indoor Depth Estimation}, 
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Chin, Tat-Jin and Shen, Chunhua and Reid, Ian}, 
  journal= {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, 
  year={2021} 
}
Owner
JiaWang Bian
PHD Student
JiaWang Bian
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022