TensorFlow Tutorials with YouTube Videos

Overview

TensorFlow Tutorials

Original repository on GitHub

Original author is Magnus Erik Hvass Pedersen

Introduction

  • These tutorials are intended for beginners in Deep Learning and TensorFlow.
  • Each tutorial covers a single topic.
  • The source-code is well-documented.
  • There is a YouTube video for each tutorial.

Tutorials for TensorFlow 2

The following tutorials have been updated and work with TensorFlow 2 (some of them run in "v.1 compatibility mode").

  1. Simple Linear Model (Notebook) (Google Colab)

  2. Convolutional Neural Network (Notebook) (Google Colab)

3-C. Keras API (Notebook) (Google Colab)

  1. Fine-Tuning (Notebook) (Google Colab)

13-B. Visual Analysis for MNIST (Notebook) (Google Colab)

  1. Reinforcement Learning (Notebook) (Google Colab)

  2. Hyper-Parameter Optimization (Notebook) (Google Colab)

  3. Natural Language Processing (Notebook) (Google Colab)

  4. Machine Translation (Notebook) (Google Colab)

  5. Image Captioning (Notebook) (Google Colab)

  6. Time-Series Prediction (Notebook) (Google Colab)

Tutorials for TensorFlow 1

The following tutorials only work with the older TensorFlow 1 API, so you would need to install an older version of TensorFlow to run these. It would take too much time and effort to convert these tutorials to TensorFlow 2.

  1. Pretty Tensor (Notebook) (Google Colab)

3-B. Layers API (Notebook) (Google Colab)

  1. Save & Restore (Notebook) (Google Colab)

  2. Ensemble Learning (Notebook) (Google Colab)

  3. CIFAR-10 (Notebook) (Google Colab)

  4. Inception Model (Notebook) (Google Colab)

  5. Transfer Learning (Notebook) (Google Colab)

  6. Video Data (Notebook) (Google Colab)

  7. Adversarial Examples (Notebook) (Google Colab)

  8. Adversarial Noise for MNIST (Notebook) (Google Colab)

  9. Visual Analysis (Notebook) (Google Colab)

  10. DeepDream (Notebook) (Google Colab)

  11. Style Transfer (Notebook) (Google Colab)

  12. Estimator API (Notebook) (Google Colab)

  13. TFRecords & Dataset API (Notebook) (Google Colab)

Videos

These tutorials are also available as YouTube videos.

Translations

These tutorials have been translated to the following languages:

New Translations

You can help by translating the remaining tutorials or reviewing the ones that have already been translated. You can also help by translating to other languages.

It is a very big job to translate all the tutorials, so you should just start with Tutorials #01, #02 and #03-C which are the most important for beginners.

New Videos

You are also very welcome to record your own YouTube videos in other languages. It is strongly recommended that you get a decent microphone because good sound quality is very important. I used vokoscreen for recording the videos and the free DaVinci Resolve for editing the videos.

Forks

See the selected list of forks for community modifications to these tutorials.

Installation

There are different ways of installing and running TensorFlow. This section describes how I did it for these tutorials. You may want to do it differently and you can search the internet for instructions.

If you are new to using Python and Linux then this may be challenging to get working and you may need to do internet searches for error-messages, etc. It will get easier with practice. You can also run the tutorials without installing anything by using Google Colab, see further below.

Some of the Python Notebooks use source-code located in different files to allow for easy re-use across multiple tutorials. It is therefore recommended that you download the whole repository from GitHub, instead of just downloading the individual Python Notebooks.

Git

The easiest way to download and install these tutorials is by using git from the command-line:

git clone https://github.com/Hvass-Labs/TensorFlow-Tutorials.git

This will create the directory TensorFlow-Tutorials and download all the files to it.

This also makes it easy to update the tutorials, simply by executing this command inside that directory:

git pull

Download Zip-File

You can also download the contents of the GitHub repository as a Zip-file and extract it manually.

Environment

I use Anaconda because it comes with many Python packages already installed and it is easy to work with. After installing Anaconda, you should create a conda environment so you do not destroy your main installation in case you make a mistake somewhere:

conda create --name tf python=3

When Python gets updated to a new version, it takes a while before TensorFlow also uses the new Python version. So if the TensorFlow installation fails, then you may have to specify an older Python version for your new environment, such as:

conda create --name tf python=3.6

Now you can switch to the new environment by running the following (on Linux):

source activate tf

Required Packages

The tutorials require several Python packages to be installed. The packages are listed in requirements.txt

To install the required Python packages and dependencies you first have to activate the conda-environment as described above, and then you run the following command in a terminal:

pip install -r requirements.txt

Starting with TensorFlow 2.1 it includes both the CPU and GPU versions and will automatically switch if you have a GPU. But this requires the installation of various NVIDIA drivers, which is a bit complicated and is not described here.

Python Version 3.5 or Later

These tutorials were developed on Linux using Python 3.5 / 3.6 (the Anaconda distribution) and PyCharm.

There are reports that Python 2.7 gives error messages with these tutorials. Please make sure you are using Python 3.5 or later!

How To Run

If you have followed the above installation instructions, you should now be able to run the tutorials in the Python Notebooks:

cd ~/development/TensorFlow-Tutorials/  # Your installation directory.
jupyter notebook

This should start a web-browser that shows the list of tutorials. Click on a tutorial to load it.

Run in Google Colab

If you do not want to install anything on your own computer, then the Notebooks can be viewed, edited and run entirely on the internet by using Google Colab. There is a YouTube video explaining how to do this. You click the "Google Colab"-link next to each tutorial listed above. You can view the Notebook on Colab but in order to run it you need to login using your Google account. Then you need to execute the following commands at the top of the Notebook, which clones the contents of this repository to your work-directory on Colab.

# Clone the repository from GitHub to Google Colab's temporary drive.
import os
work_dir = "/content/TensorFlow-Tutorials/"
if not os.path.exists(work_dir):
    !git clone https://github.com/Hvass-Labs/TensorFlow-Tutorials.git
os.chdir(work_dir)

All required packages should already be installed on Colab, otherwise you can run the following command:

!pip install -r requirements.txt

Older Versions

Sometimes the source-code has changed from that shown in the YouTube videos. This may be due to bug-fixes, improvements, or because code-sections are moved to separate files for easy re-use.

If you want to see the exact versions of the source-code that were used in the YouTube videos, then you can browse the history of commits to the GitHub repository.

License (MIT)

These tutorials and source-code are published under the MIT License which allows very broad use for both academic and commercial purposes.

A few of the images used for demonstration purposes may be under copyright. These images are included under the "fair usage" laws.

You are very welcome to modify these tutorials and use them in your own projects. Please keep a link to the original repository.

Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022