Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Overview

Music Trees

Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

train-test splits and hierarchies.

  • For all experiments, we used the instrument-based split in /music_trees/assets/partitions/mdb-aug.json.
  • To view our Hornbostel-Sachs class hierarchy, see /music_trees/assets/taxonomies/deeper-mdb.yaml. Note that not all of the instruments on this taxonomy are used in our experiments.
  • All random taxonomies are in /music_trees/assets/taxonomies/scrambled-*.yaml

Installation

first, clone the medleydb repo and install using pip install -e:

  • medleydb from marl

Now, download the medleydb and mdb 2.0 datasets from zenodo.

install some utilities for visualizing the embedding space:

git clone https://github.com/hugofloresgarcia/embviz.git
cd embviz
pip install -e .

then, clone this repo and install with

pip install -e .

Usage

1. Generate data

Make sure the MEDLEYDB_PATH environment variable is set (see the medleydb repo for more instructions ). Then, run the generation script:

python -m music_trees.generate \
                --dataset mdb \
                --name mdb-aug \
                --example_length 1.0 \
                --augment true \
                --hop_length 0.5 \
                --sample_rate 16000 \

This will generate both augmented and unaugmented data for MedleyDB. NOTE: There was a bug in the code that disabled data augmentation silently. This bug has been left in the code for the sake of reproducibility. This is why we don't report any data augmentation in the paper, as none was applied at the time of experiments.

2. Partition data

The partition file used for all experiments is available at /music_trees/assets/partitions/mdb-aug.json.

3. Run experiments

The search script will train all models for a particular experiment. It will grab as many GPUs are available (use CUDA_VISIBLE_DEVICES to change the availability of GPUs) and train as many models as it can in parallel.

Each model will be stored under /runs/<NAME>/<VERSION>.

Arbitrary Hierarchies

python music_trees/search.py --name scrambled-tax

Height Search (note that height=0 and height=1 are the baseline and proposed model, respectively)

python music_trees/search.py --name height-v1

Loss Ablation

python music_trees/search.py --name loss-alpha

train the additional BCE baseline:

python music_trees/train.py --model_name hprotonet --height 4 --d_root 128 --loss_alpha 1 --name "flat (BCE)" --dataset mdb-aug --learning_rate 0.03 --loss_weight_fn cross-entropy

4. Evaluate

Perform evaluation on a model. Make sure to pass the path to the run that you wish to evaluate.

To evaluate a model:

python music_trees/eval.py --exp_dir <PATH_TO_RUN>/<VERSION>

Each model will store its evaluation results under /results/<NAME>/<VERSION>

5. Analyze

To compare models and generate analysis figures and tables, place of all the results folders you would like to analyze under a single folder. The resulting folder should look like this:

my_experiment/trial1/version_0
my_experiment/trial2/version_0
my_experiment/trial3/version_0

Then, run analysis using

python music_trees analyze.py my_experiment   <OUTPUT_NAME> 

the figures will be created under /analysis/<OUTPUT_NAME>

To generate paper-ready figures, see scripts/figures.ipynb.

Owner
Hugo Flores García
PhD @interactiveaudiolab
Hugo Flores García
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Namish Khanna 40 Oct 11, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022