QilingLab challenge writeup

Overview

qiling lab writeup

shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。

前情提要

Qiling 是一款功能強大的模擬框架,和 qemu user mode 類似,但可以做到更多功能,詳情請見他們的 github網站

他們有官方文件,解此題目前建議看一下。

我所解的為 aarch64 的 challenge,使用的 rootfs 為 qililng 所提供的 arm64_linux

逆向工具用 ghidra,因為我沒錢買 idapro。

First

先隨手寫個 python 用 qiling 執行 challenge binary。

import sys
from qiling import *
from qiling.const import QL_VERBOSE

sys.path.append("..")


if __name__ == "__main__":
    ql = Qiling(["qilinglab-aarch64"], "rootfs/arm64_linux",verbose=QL_VERBOSE.OFF)
    ql.run()

可以看到結果是 binary 會不正常執行,此為正常現象,有些 Challenge 沒解完會導致錯誤或是無窮迴圈。

Welcome to QilingLab.
Here is the list of challenges:
Challenge 1: Store 1337 at pointer 0x1337.
Challenge 2: Make the 'uname' syscall return the correct values.
Challenge 3: Make '/dev/urandom' and 'getrandom' "collide".
Challenge 4: Enter inside the "forbidden" loop.
Challenge 5: Guess every call to rand().
Challenge 6: Avoid the infinite loop.
Challenge 7: Don't waste time waiting for 'sleep'.
Challenge 8: Unpack the struct and write at the target address.
Challenge 9: Fix some string operation to make the iMpOsSiBlE come true.
Challenge 10: Fake the 'cmdline' line file to return the right content.
Challenge 11: Bypass CPUID/MIDR_EL1 checks.

Checking which challenge are solved...
Note: Some challenges will results in segfaults and infinite loops if they aren't solved.
[x]	

[x]	x0	:	 0x0
[x]	x1	:	 0x0
[x]	x2	:	 0x1
[x]	x3	:	 0x0
[x]	x4	:	 0x0

Challenge 1

把 0x1337 的位置的值改成 1337

用 qiling 把該位置的 memory 讀出來,在進行改寫,要注意 align 問題。詳情請見文件

    ql.mem.map(0x1337//4096*4096, 4096)
    ql.mem.write(0x1337,ql.pack16(1337) )

Challenge 2

改掉 uname 此 system call 的 return。

可以看到他去比對 uname.sysname 和 uname.version 是否為特定值。我採用對 system call 進行 hijack

去翻 linux 文件 可以看到 uname 回傳的格式為 :

struct utsname {
               char sysname[];    /* Operating system name (e.g., "Linux") */
               char nodename[];   /* Name within "some implementation-defined
                                     network" */
               char release[];    /* Operating system release
                                     (e.g., "2.6.28") */
               char version[];    /* Operating system version */
               char machine[];    /* Hardware identifier */
           #ifdef _GNU_SOURCE
               char domainname[]; /* NIS or YP domain name */
           #endif
};

依照此文件把相對應的位置改掉。注意如果 release 改太小或是沒給,會噴錯。

def my_syscall_uname(ql, write_buf, *args, **kw):
    buf = b'QilingOS\x00' # sysname
    ql.mem.write(write_buf, buf)
    buf = b'30000'.ljust(65, b'\x00') # important!! If not sat will `FATAL: kernel too old`
    ql.mem.write(write_buf+65*2, buf)
    buf = b'ChallengeStart'.ljust(65, b'\x00') # version
    ql.mem.write(write_buf+65*3, buf)
    regreturn = 0
    return regreturn

ql.set_syscall("uname", my_syscall_uname)

Challenge 3

/dev/random,從中讀取兩次,確保第一次的值和 getrandom 得到的值相同,且其中沒有第二次讀到值。

查了一下 getrandom 是一 system call。因此對 /dev/random 和 getrandom() 進行 hijack 即可

class Fake_urandom(QlFsMappedObject):
    def read(self, size):
        if(size > 1):
            return b"\x01" * size
        else:
            return b"\x02"
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

def my_syscall_getrandom(ql, write_buf, write_buf_size, flag , *args, **kw):
    buf = b"\x01" * write_buf_size
    ql.mem.write(write_buf, buf)
    regreturn = 0
    return regreturn
    
ql.add_fs_mapper('/dev/urandom', Fake_urandom())
ql.set_syscall("getrandom", my_syscall_getrandom)

Challenge 4

進入不能進去的迴圈

直接 hook cmp 的位置讓 reg w0 是 1 即可,位置記得要加上 pie。

    # 00100fd8 e0 1b 40 b9     ldr        w0,[sp, #local_8]
    # 00100fdc e1 1f 40 b9     ldr        w1,[sp, #local_4]
    # 00100fe0 3f 00 00 6b     cmp        w1,w0    <- hook         
def hook_cmp(ql):
    ql.reg.w0 = 1
    return

base_addr = ql.mem.get_lib_base(ql.path) # get pie_base addr
ql.hook_address(hook_cmp, base_addr + 0xfe0)

Challenge 5

rand() 出來的值和 0 比較要通過

直接 hijack rand() 讓他回傳都是 0 即可。

def hook_cmp(ql):
    ql.reg.w0 = 1
    return
    
ql.set_api("rand", hook_rand)

Challenge 6

解開無窮迴圈

和 Challenge 4 同想法,hook cmp。

def hook_cmp2(ql):
    ql.reg.w0 = 0
    return
    
ql.hook_address(hook_cmp2, base_addr + 0x001118)

Challenge 7

不要讓他 sleep。 解法很多,可以 hook sleep 這個 api,或是看 sleep linux 文件能知道內部處理是用 nanosleep,hook 他即可。

def hook_sleeptime(ql):
    ql.reg.w0 = 0
    return
ql.hook_address(hook_sleeptime, base_addr + 0x1154)

Challenge 8

裡面最難的一題,他是建立特殊一個結構長這個樣子。

struct something(0x18){ 
 string_ptr -> malloc (0x1e) ->  0x64206d6f646e6152
 long_int = 0x3DFCD6EA00000539
 check_addr -> check;
}  

由於他結構內部有 0x3DFCD6EA00000539 這個 magic byte,因此可以直接對此作搜尋並改寫內部記憶體。這邊要注意搜尋可能找到其他位置,因此前面可以加對 string_ptr 所在位置的判斷。

def find_and_patch(ql, *args, **kw):
    MAGIC = 0x3DFCD6EA00000539
    magic_addrs = ql.mem.search(ql.pack64(MAGIC)) 

    # check_all_magic
    for magic_addr in magic_addrs:
        # Dump and unpack the candidate structure
        malloc1_addr = magic_addr - 8
        malloc1_data = ql.mem.read(malloc1_addr, 24)
        # unpack three unsigned long
        string_addr, _ , check_addr = struct.unpack('QQQ', malloc1_data)

        # check string data        
        if ql.mem.string(string_addr) == "Random data":
            ql.mem.write(check_addr, b"\x01")
            break
    return
    
ql.hook_address(find_and_patch, base_addr + 0x011dc)

另一種解法則是由於該結構在 stack 上,因此直接讀 stack 即可。

Challenge 9

把一字串轉用tolower小寫,再用 strcmp 比較。

解法一樣很多種,我是 hijack tolower() 讓他啥事都不做。

def hook_tolower(ql):
    return
    
ql.set_api("tolower", hook_tolower)

Challenge 10

打開不存在的文件,讀取的值需要是 qilinglab

和 Challenge 3 作法一樣,這邊要注意的是 return 要是 byte,string 會出錯。 = =

class Fake_cmdline(QlFsMappedObject):

    def read(self, size):
        return b"qilinglab" # type should byte byte, string will error = =
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

ql.add_fs_mapper('/proc/self/cmdline', Fake_cmdline())

Challenge 11

可以看到他從 MIDR_EL1 取值,而此為特殊的暫存器。

這邊解法是去 hook code,我選擇 hook 這段

# 001013ec 00 00 38 d5     mrs        x0,midr_el1

去搜尋所有記憶體為 b"\x00\x00\x38\xD5" ,讓他執行時把 x0 暫存器改寫,並更改 pc。

def midr_el1_hook(ql, address, size):  
    if ql.mem.read(address, size) == b"\x00\x00\x38\xD5":
        # if any code is mrs        x0,midr_el1
        # Write the expected value to x0
        ql.reg.x0 = 0x1337 << 0x10
        # Go to next instruction
        ql.reg.arch_pc += 4
    # important !! Maybe hook library
    # see : https://joansivion.github.io/qilinglabs/
    return

ql.hook_code(midr_el1_hook)

Done

Thanks

Thanks MANSOUR Cyril release his writeup, help me alot.

Owner
Yuan
Yuan
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023