QilingLab challenge writeup

Overview

qiling lab writeup

shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。

前情提要

Qiling 是一款功能強大的模擬框架,和 qemu user mode 類似,但可以做到更多功能,詳情請見他們的 github網站

他們有官方文件,解此題目前建議看一下。

我所解的為 aarch64 的 challenge,使用的 rootfs 為 qililng 所提供的 arm64_linux

逆向工具用 ghidra,因為我沒錢買 idapro。

First

先隨手寫個 python 用 qiling 執行 challenge binary。

import sys
from qiling import *
from qiling.const import QL_VERBOSE

sys.path.append("..")


if __name__ == "__main__":
    ql = Qiling(["qilinglab-aarch64"], "rootfs/arm64_linux",verbose=QL_VERBOSE.OFF)
    ql.run()

可以看到結果是 binary 會不正常執行,此為正常現象,有些 Challenge 沒解完會導致錯誤或是無窮迴圈。

Welcome to QilingLab.
Here is the list of challenges:
Challenge 1: Store 1337 at pointer 0x1337.
Challenge 2: Make the 'uname' syscall return the correct values.
Challenge 3: Make '/dev/urandom' and 'getrandom' "collide".
Challenge 4: Enter inside the "forbidden" loop.
Challenge 5: Guess every call to rand().
Challenge 6: Avoid the infinite loop.
Challenge 7: Don't waste time waiting for 'sleep'.
Challenge 8: Unpack the struct and write at the target address.
Challenge 9: Fix some string operation to make the iMpOsSiBlE come true.
Challenge 10: Fake the 'cmdline' line file to return the right content.
Challenge 11: Bypass CPUID/MIDR_EL1 checks.

Checking which challenge are solved...
Note: Some challenges will results in segfaults and infinite loops if they aren't solved.
[x]	

[x]	x0	:	 0x0
[x]	x1	:	 0x0
[x]	x2	:	 0x1
[x]	x3	:	 0x0
[x]	x4	:	 0x0

Challenge 1

把 0x1337 的位置的值改成 1337

用 qiling 把該位置的 memory 讀出來,在進行改寫,要注意 align 問題。詳情請見文件

    ql.mem.map(0x1337//4096*4096, 4096)
    ql.mem.write(0x1337,ql.pack16(1337) )

Challenge 2

改掉 uname 此 system call 的 return。

可以看到他去比對 uname.sysname 和 uname.version 是否為特定值。我採用對 system call 進行 hijack

去翻 linux 文件 可以看到 uname 回傳的格式為 :

struct utsname {
               char sysname[];    /* Operating system name (e.g., "Linux") */
               char nodename[];   /* Name within "some implementation-defined
                                     network" */
               char release[];    /* Operating system release
                                     (e.g., "2.6.28") */
               char version[];    /* Operating system version */
               char machine[];    /* Hardware identifier */
           #ifdef _GNU_SOURCE
               char domainname[]; /* NIS or YP domain name */
           #endif
};

依照此文件把相對應的位置改掉。注意如果 release 改太小或是沒給,會噴錯。

def my_syscall_uname(ql, write_buf, *args, **kw):
    buf = b'QilingOS\x00' # sysname
    ql.mem.write(write_buf, buf)
    buf = b'30000'.ljust(65, b'\x00') # important!! If not sat will `FATAL: kernel too old`
    ql.mem.write(write_buf+65*2, buf)
    buf = b'ChallengeStart'.ljust(65, b'\x00') # version
    ql.mem.write(write_buf+65*3, buf)
    regreturn = 0
    return regreturn

ql.set_syscall("uname", my_syscall_uname)

Challenge 3

/dev/random,從中讀取兩次,確保第一次的值和 getrandom 得到的值相同,且其中沒有第二次讀到值。

查了一下 getrandom 是一 system call。因此對 /dev/random 和 getrandom() 進行 hijack 即可

class Fake_urandom(QlFsMappedObject):
    def read(self, size):
        if(size > 1):
            return b"\x01" * size
        else:
            return b"\x02"
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

def my_syscall_getrandom(ql, write_buf, write_buf_size, flag , *args, **kw):
    buf = b"\x01" * write_buf_size
    ql.mem.write(write_buf, buf)
    regreturn = 0
    return regreturn
    
ql.add_fs_mapper('/dev/urandom', Fake_urandom())
ql.set_syscall("getrandom", my_syscall_getrandom)

Challenge 4

進入不能進去的迴圈

直接 hook cmp 的位置讓 reg w0 是 1 即可,位置記得要加上 pie。

    # 00100fd8 e0 1b 40 b9     ldr        w0,[sp, #local_8]
    # 00100fdc e1 1f 40 b9     ldr        w1,[sp, #local_4]
    # 00100fe0 3f 00 00 6b     cmp        w1,w0    <- hook         
def hook_cmp(ql):
    ql.reg.w0 = 1
    return

base_addr = ql.mem.get_lib_base(ql.path) # get pie_base addr
ql.hook_address(hook_cmp, base_addr + 0xfe0)

Challenge 5

rand() 出來的值和 0 比較要通過

直接 hijack rand() 讓他回傳都是 0 即可。

def hook_cmp(ql):
    ql.reg.w0 = 1
    return
    
ql.set_api("rand", hook_rand)

Challenge 6

解開無窮迴圈

和 Challenge 4 同想法,hook cmp。

def hook_cmp2(ql):
    ql.reg.w0 = 0
    return
    
ql.hook_address(hook_cmp2, base_addr + 0x001118)

Challenge 7

不要讓他 sleep。 解法很多,可以 hook sleep 這個 api,或是看 sleep linux 文件能知道內部處理是用 nanosleep,hook 他即可。

def hook_sleeptime(ql):
    ql.reg.w0 = 0
    return
ql.hook_address(hook_sleeptime, base_addr + 0x1154)

Challenge 8

裡面最難的一題,他是建立特殊一個結構長這個樣子。

struct something(0x18){ 
 string_ptr -> malloc (0x1e) ->  0x64206d6f646e6152
 long_int = 0x3DFCD6EA00000539
 check_addr -> check;
}  

由於他結構內部有 0x3DFCD6EA00000539 這個 magic byte,因此可以直接對此作搜尋並改寫內部記憶體。這邊要注意搜尋可能找到其他位置,因此前面可以加對 string_ptr 所在位置的判斷。

def find_and_patch(ql, *args, **kw):
    MAGIC = 0x3DFCD6EA00000539
    magic_addrs = ql.mem.search(ql.pack64(MAGIC)) 

    # check_all_magic
    for magic_addr in magic_addrs:
        # Dump and unpack the candidate structure
        malloc1_addr = magic_addr - 8
        malloc1_data = ql.mem.read(malloc1_addr, 24)
        # unpack three unsigned long
        string_addr, _ , check_addr = struct.unpack('QQQ', malloc1_data)

        # check string data        
        if ql.mem.string(string_addr) == "Random data":
            ql.mem.write(check_addr, b"\x01")
            break
    return
    
ql.hook_address(find_and_patch, base_addr + 0x011dc)

另一種解法則是由於該結構在 stack 上,因此直接讀 stack 即可。

Challenge 9

把一字串轉用tolower小寫,再用 strcmp 比較。

解法一樣很多種,我是 hijack tolower() 讓他啥事都不做。

def hook_tolower(ql):
    return
    
ql.set_api("tolower", hook_tolower)

Challenge 10

打開不存在的文件,讀取的值需要是 qilinglab

和 Challenge 3 作法一樣,這邊要注意的是 return 要是 byte,string 會出錯。 = =

class Fake_cmdline(QlFsMappedObject):

    def read(self, size):
        return b"qilinglab" # type should byte byte, string will error = =
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

ql.add_fs_mapper('/proc/self/cmdline', Fake_cmdline())

Challenge 11

可以看到他從 MIDR_EL1 取值,而此為特殊的暫存器。

這邊解法是去 hook code,我選擇 hook 這段

# 001013ec 00 00 38 d5     mrs        x0,midr_el1

去搜尋所有記憶體為 b"\x00\x00\x38\xD5" ,讓他執行時把 x0 暫存器改寫,並更改 pc。

def midr_el1_hook(ql, address, size):  
    if ql.mem.read(address, size) == b"\x00\x00\x38\xD5":
        # if any code is mrs        x0,midr_el1
        # Write the expected value to x0
        ql.reg.x0 = 0x1337 << 0x10
        # Go to next instruction
        ql.reg.arch_pc += 4
    # important !! Maybe hook library
    # see : https://joansivion.github.io/qilinglabs/
    return

ql.hook_code(midr_el1_hook)

Done

Thanks

Thanks MANSOUR Cyril release his writeup, help me alot.

Owner
Yuan
Yuan
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021