This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Overview

Semantic SLAM

This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extracted from object detections in order to create a sparse semantic map of the environment, thus optimizing the drift of the VO/VIO algorithms.

In order to run this package you will need two additional modules

Currently it can extract planar surfaces and create a semantic map from from the following objects:

  • chair
  • tvmonitor
  • book
  • keyboard
  • laptop
  • bucket
  • car

Related Paper:

@ARTICLE{9045978,
  author={Bavle, Hriday and De La Puente, Paloma and How, Jonathan P. and Campoy, Pascual},
  journal={IEEE Access}, 
  title={VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems}, 
  year={2020},
  volume={8},
  number={},
  pages={60704-60718},
  doi={10.1109/ACCESS.2020.2983121}}

Video

Semantic SLAM

How do I set it up?

First install g2o following these instructions (Tested on Kinetic and Melodic Distributions):

- sudo apt-get install ros-$ROS_DISTRO-libg2o
- sudo cp -r /opt/ros/$ROS_DISTRO/lib/libg2o_* /usr/local/lib
- sudo cp -r /opt/ros/$ROS_DISTRO/include/g2o /usr/local/include

Install OctopMap server for map generation capabilities:

- sudo apt install ros-$ROS_DISTRO-octomap*

Try a simple example with pre-recorded VIO pose and a blue bucket detector:

Create a ros workspace and clone the following packages:

  • Download the rosbag:
    wget -P ~/Downloads/ https://www.dropbox.com/s/jnywuvcn2m9ubu2/entire_lab_3_rounds.bag
  • Create a workspace, clone the repo and compile:
    mkdir -p workspace/ros/semantic_slam_ws/src/ && cd workspace/ros/semantic_slam_ws/src/    
    git clone https://github.com/hridaybavle/semantic_slam && git clone https://bitbucket.org/hridaybavle/bucket_detector.git   
    cd .. && catkin build --cmake-args -DCMAKE_BUILD_TYPE=Release
  • Launch and visualize
    source devel/setup.bash
    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true  

test

Using Docker Image

If the code is giving problems with you local machine, you can try the docker image created with the repo and the required settings.

Download Docker from: Docker

Follow the commands to run the algorithm with the docker

  docker pull hridaybavle/semantic_slam:v1 	
  docker run --rm -it --net="host" -p 11311:11311 hridaybavle/semantic_slam:v1 bash
  cd ~/workspace/ros/semantic_slam_ws/
  source devel/setup.bash
  roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=false  

Open a new terminal and rviz in local machine

  cd ~/Downloads/ && wget https://raw.githubusercontent.com/hridaybavle/semantic_slam/master/rviz/graph_semantic_slam.rviz
  rviz -d graph_semantic_slam.rviz	

Subsribed Topics

Published Topics

The configurations of the algorithms can be found inside the cfg folder in order to be changed accordingly.

Published TFs

  • map to odom transform: The transform published between the map frame and the odom frame after the corrections from the semantic SLAM.

  • base_link to odom transform: The transform published between the base_link (on the robot) frame and the odom frame as estimated by the VO/VIO algorithm.

You might also like...
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

Pytorch implementation of paper:
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

Sequence lineage information extracted from RKI sequence data repo
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Code for
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

 Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

Comments
  • errors at last step

    errors at last step

    Hi, I have finished all the steps following the instructions and nothing goes wrong. But when I run

    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true  
    

    I get errors like this and it stucks for a while.

    # Using CSparse poseDim -1 landMarkDim -1 blockordering 0
    done
    keyframe_delta_trans 0.5
    keyframe_delta_angle 0.5
    keyframe_delta_time 1
    use_const_inf_matrix: 1
    const_stddev_x: 0.00667
    const_stddev_q: 1e-05
    Initialized mapping thread 
    camera angle in radians: 0.59219
    update keyframe every detection: 1
    add first landmark: 0
    [semantic_graph_slam_node-9] process has died [pid 23067, exit code -11, cmd /home/nrc/workspace/ros/semantic_slam_ws/devel/lib/semantic_SLAM/semantic_graph_SLAM_node __name:=semantic_graph_slam_node __log:=/home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/semantic_graph_slam_node-9.log].
    log file: /home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/semantic_graph_slam_node-9*.log
    

    then I get this. It seems that the visualization program doesn't go right.

    [rosbag-2] process has finished cleanly
    log file: /home/nrc/.ros/log/ccaf4b14-a47a-11ea-b300-000c29c39525/rosbag-2*.log
    

    Is there something I have missed? Thank you!

    opened by ZhengXinyue 8
  • [semantic_graph_slam_node-9] process has died

    [semantic_graph_slam_node-9] process has died

    Hi, I have finished all the steps following the instructions and nothing goes wrong. But when I run

    roslaunch semantic_SLAM ps_slam_with_snap_pose_bucket_det_lab_data_with_octomap.launch bagfile:=${HOME}/Downloads/entire_lab_3_rounds.bag show_rviz:=true
    

    I get errors like this.

    done
    keyframe_delta_trans 0.5
    keyframe_delta_angle 0.5
    keyframe_delta_time 1
    use_const_inf_matrix: 1
    const_stddev_x: 0.00667
    const_stddev_q: 1e-05
    camera angle in radians: 0.59219
    update keyframe every detection: 1
    add first landmark: 0
    [ INFO] [1591944956.099907360, 1661396775.076756992]: waitForService: Service [/depth_rectifier_manager/load_nodelet] is now available.
    [ INFO] [1591944956.100243666, 1661396775.076756992]: waitForService: Service [/depth_manager/load_nodelet] is now available.
    [ INFO] [1591944956.545617511, 1661396775.518832629]: Stereo is NOT SUPPORTED
    [ INFO] [1591944956.545842654, 1661396775.518832629]: OpenGl version: 4.5 (GLSL 4.5).
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000614, using 1248 valid points
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000748, using 1444 valid points
    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.001710, using 2303 valid points
    [semantic_graph_slam_node-9] process has died [pid 27314, exit code -9, cmd /home/nrc/hd/workspace/ros/semantic_slam_ws/devel/lib/semantic_SLAM/semantic_graph_SLAM_node __name:=semantic_graph_slam_node __log:=/home/nrc/.ros/log/c2c4ddd8-ac79-11ea-96ed-8ca982ff1833/semantic_graph_slam_node-9.log].
    log file: /home/nrc/.ros/log/c2c4ddd8-ac79-11ea-96ed-8ca982ff1833/semantic_graph_slam_node-9*.log
    

    When it occurs

    [pcl::OrganizedNeighbor::radiusSearch] Input dataset is not from a projective device!
    Residual (MSE) 0.000614, using 1248 valid points
    

    the program is still mapping , so I think the problem is not caused by 'pcl'.

    I tried to run the launchfile seperately :

    ROS_NAMESPACE=camera/color rosrun image_proc image_proc 
    roslaunch semantic_SLAM shape.launch  
    rosrun semantic_SLAM  semantic_graph_SLAM_node
    

    But at the last step i got 'Segmentation fault :

    add first landmark: 0
    Segmentation fault (core dumped)
    

    Do you have any idea about it? Thanks a lot !!!

    opened by He-Rong 6
  • Dataset download failure problem

    Dataset download failure problem

    Hello, when I run the sample code, I always encounter network interruptions or unknown errors at the last moment when downloading the dataset entire_lab_3_rounds.bag. Can you provide a new way to download the bag?

    opened by kycwx 2
  • Problemas de incompatibilidad de opencv en el bucket detector

    Problemas de incompatibilidad de opencv en el bucket detector

    Hola, he conseguido que ambos paquetes en conjunto (semantic slam y bucket detector) funciones bien en una distro de ubuntu virgen con ROS melodic, sin embargo, cuando migro al pc donde trabajo habitualmente y que tiene ya instaladas dependencias anteriores y demás me encuentro con estos errores referentes a opencv: Captura de pantalla de 2021-05-26 11-29-18 Imagino que se deben a incompatibilidades entre versiones de opencv, podrías confirmarme esto último? Sería posible trabajar con una versión de opencv diferente? Gracias, un saludo!

    opened by iandresolares 2
Releases(2.0.0)
Owner
Hriday Bavle
Postdoctoral Researcher at the University of Luxembourg. My research interests are VO/VIO, SLAM, Perception and Planning applied to Mobile Robots.
Hriday Bavle
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022