Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Overview

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

We propose Disentangled Audio-Visual System (DAVS) to address arbitrary-subject talking face generation in this work, which aims to synthesize a sequence of face images that correspond to given speech semantics, conditioning on either an unconstrained speech audio or video.

[Project] [Paper] [Demo]

Recommondation of our CVPR21 repo

This repo is barely maintaining since the version of this code is out of date. If you are interested in the topic of Talking Face Generation, feel free to try the CODE of our CVPR2021 PAPER!

Requirements

Generating test results

Create the default folder "checkpoints" and put the checkpoint in it or get the CHECKPOINT_PATH
  • Samples for testing can be found in this folder named 0572_0019_0003. This is a pre-processed sample from the Voxceleb Dataset.

  • Run the testing script to generate videos from video:

python test_all.py  --test_root ./0572_0019_0003/video --test_type video --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH
  • Run the testing script to generate videos from audio:
python test_all.py  --test_root ./0572_0019_0003/audio --test_type audio --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH

Sample Results

  • Talking Effect on Human Characters

  • Talking Effect on Non-human Characters (Trained on Human Faces Only)

Create more samples

  • The face detection tool used in the demo videos can be found at RSA. It will return a Matfile with 5 key point locations in a row for each image. Other face alignment methods are also appliable such as dlib. The key points for face alignement we used are the two for the center of the eyes and the average point of the corners of the mouth. With each image's PATH and the face POINTS, you can find our way of face alignment at preprocess/face_align.py.

  • Our preprocessing of the audio files is the same and borrowed from the matlab code of SyncNet. Then we save the mfcc features into bin files.

Preparing Training Data

  • We used the LRW dataset for training.
  • The directories are arranged like this:
data
├── train, val, test
|	├── 0, 1, 2 ... 499 (one folder for each class)
|	│   ├── 0, 1, 2 ... #videos per class
|	│   │   ├── align_face256
|	│   │   |   ├── 0, 1, ... 28.jpg
|	│   |   ├── mfcc20
|	│   │   |   ├── 2, 3 ... 26.bin

where each video is extracted to frames and aligned using our protocol, and each audio is processed and saved using Matlab.

Training

python train.py
  • This is still a beta version of the training code which only disentangles wid information from pid space. Running the train.py only might not be able to fully reproduce the paper. However, it can be served as a reference for how we implement the whole training process.
  • During our own implementation, the classification part (without generation and disentanglement) is pretrained first. The pretraining training code is temporarily not provided.

Postprocessing Details (Optional)

  • The directly generated results may suffer from a "zoom-in-and-out" condition which we assume is caused by our alignment of the training set. We solve the unstable problem using Subspace Video Stabilization in the demos.

License and Citation

The use of this software is RESTRICTED to non-commercial research and educational purposes.

@inproceedings{zhou2019talking,
  title     = {Talking Face Generation by Adversarially Disentangled Audio-Visual Representation},
  author    = {Zhou, Hang and Liu, Yu and Liu, Ziwei and Luo, Ping and Wang, Xiaogang},
  booktitle = {AAAI Conference on Artificial Intelligence (AAAI)},
  year      = {2019},
}

Acknowledgement

The structure of this codebase is borrowed from pix2pix.

Owner
Hang_Zhou
Ph.D. @ MMLab-CUHK
Hang_Zhou
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022