Extreme Lightwegith Portrait Segmentation

Overview

Extreme Lightwegith Portrait Segmentation

Please go to this link to download code

Requirements

  • python 3
  • pytorch >= 0.4.1
  • torchvision==0.2.1
  • opencv-python==3.4.2.17
  • numpy
  • tensorflow >=1.13.0
  • visdom

Model

ExtremeC3Net (paper)

Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Jihwan Bang, Nojun Kwak.

"ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules"

  • config file : extremeC3Net.json
  • Param : 0.038 M
  • Flop : 0.128 G
  • IoU : 94.98

SINet (paper) Accepted in WACV2020

Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Nicolas Monet, Jihwan Bang, Nojun Kwak

SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder

  • config file : SINet.json
  • Param : 0.087 M
  • Flop : 0.064 G
  • IoU : 95.2

Run example

  • Preparing dataset

Download datasets if you use audgmented dataset, fix the code in dataloader.py in line 20 depending on location of augmented dataset. Also, please make different pickle file for Augmented dataset and baseline dataset.

  • Train

1 . ExtremeC3Net

python main.py --c ExtremeC3Net.json

2 . SINet

python main.py --c SINet.json

Additonal Dataset

We make augmented dataset from Baidu fashion dataset.

The original Baidu dataset link is here

EG1800 dataset link what I used in here

Our augmented dataset is here. We use all train and val dataset for training segmentation model.

CityScape

If you want SINet code for cityscapes dataset, please go to this link.

Citation

If our works is useful to you, please add two papers.

@article{park2019extremec3net,
  title={ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules},
  author={Park, Hyojin and Sj{\"o}sund, Lars Lowe and Yoo, YoungJoon and Kwak, Nojun},
  journal={arXiv preprint arXiv:1908.03093},
  year={2019}
}

@article{park2019sinet,
  title={SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder},
  author={Park, Hyojin and Sj{\"o}sund, Lars Lowe and Monet, Nicolas and Yoo, YoungJoon and Kwak, Nojun},
  journal={arXiv preprint arXiv:1911.09099},
  year={2019}
}

Acknowledge

We are grateful to Clova AI, NAVER with valuable discussions.

I also appreciate my co-authors Lars Lowe Sjösund and YoungJoon Yoo from Clova AI, NAVER, Nicolas Monet from NAVER LABS Europe and Jihwan Bang from Search Solutions, Inc

Owner
HYOJINPARK
HYOJINPARK
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022