Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Overview

Alias-Free-Torch

Simple torch module implementation of Alias-Free GAN.

This repository including

Note: Since this repository is unofficial, filter and upsample could be different with official implementation.

Note: 2d lowpass filter is applying sinc instead of jinc (first order Bessel function of the first kind) in paper

Requirements

Due to torch.kaiser_window and torch.i0 are implemeted after 1.7.0, our repository need torch>=1.7.0.

  • Pytorch>=1.7.0

TODO

  • 2d sinc filter
  • 2d resample
  • devide 1d and 2d modules
  • pip packaging

Test results 1d

Filter sine Filter noise
filtersin filternoise
upsample downsample
up2 down10
up256 down100

Test results 2d

Filter L1 norm sine Filter noise
filter2dsin filter2dnoise
upsample downsample
up2d2 downsample2d2
up2d8 downsample2d4
Activation
act

References

  • Alias-Free GAN
  • adefossez/julius
  • A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Pearson, International Edition, 3rd edition, 2010

Acknowledgement

This work is done at MINDsLab Inc.

Thanks to teammates at MINDsLab Inc.

Comments
  •  Batched resampling for the new implementation

    Batched resampling for the new implementation

    Hi, thank you very much for the contribution.

    I think the new implementation of resample.Upsample1d and resample.Downsample1d breaks batched resampling when using groups=C without expanding the filter to match the shape. Perhaps the implementation should be like the below (maybe similar goes to 2d):

    Upsample1d.forward()

        # x: [B,C,T]
        def forward(self, x):
            B, C, T = x.shape
            x = F.pad(x, (self.pad, self.pad), mode='reflect')
            # TConv with filter expanded to C with C groups for depthwise op
            x = self.ratio * F.conv_transpose1d(
                x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
            pad_left = self.pad * self.stride + (self.kernel_size -
                                                 self.stride) // 2
            pad_right = self.pad * self.stride + (self.kernel_size - self.stride +
                                                  1) // 2
            x = x[..., pad_left:-pad_right]
    

    LowPassFilter1d.forward()

        #input [B,C,T]
        def forward(self, x):
            B, C, T = x.shape
            if self.padding:
                x = F.pad(x, (self.left_pad, self.right_pad),
                          mode=self.padding_mode)
            # Conv with filter expanded to C with C groups for depthwise op
            out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C) # typo 'groupds' btw
            return out
    

    Could you check the correctness? Thanks again for the implementation!

    opened by L0SG 2
  • torch.speical.i1 typo

    torch.speical.i1 typo

    https://github.com/junjun3518/alias-free-torch/blob/f1fddd52fdd068ee475e82ae60c92e1bc24ffe02/src/alias_free_torch/filter.py#L22

    At this line I believe you wanted torch.special.i1.

    opened by torridgristle 2
  • "if self.pad / self.padding" in LowPassFilter2d

    https://github.com/junjun3518/alias-free-torch/blob/258551410ff7bf02e06ece7c597466dc970fe5c7/src/alias_free_torch/filter.py#L165 https://github.com/junjun3518/alias-free-torch/blob/258551410ff7bf02e06ece7c597466dc970fe5c7/src/alias_free_torch/filter.py#L173

    In LowPassFilter2d it looks like if self.pad: should change to if self.padding:, or self.padding = padding should change to self.pad = padding to match LowPassFilter1d.

    opened by torridgristle 1
  • Padding Bool typo

    Padding Bool typo

    https://github.com/junjun3518/alias-free-torch/blob/258551410ff7bf02e06ece7c597466dc970fe5c7/src/alias_free_torch/filter.py#L73

    padding: bool: True, should be padding: bool = True,

    I'm not sure if this causes an error with every version of PyTorch, but it does with PyTorch 1.12.0+cu113 on Python 3.7.13

    opened by torridgristle 1
  • 2D Filter Jinc appears to be wrong

    2D Filter Jinc appears to be wrong

    Here is a plot of the generated 1D sinc filter kernel. sinc looks right

    Here is a plot of the generated 2D jinc filter kernel. jinc looks wrong

    I'd expect it to look more like a series of rings or ripples, rather than a donut or torus.

    jinc filtered noise fft

    The FFT output for randn noise put through the 2D filter doesn't look right either.

    change jinc to sinc in 2d filter

    Changing filter_ = 2 * cutoff * window * jinc(2 * cutoff * time) to filter_ = 2 * cutoff * window * sinc(2 * cutoff * time) in kaiser_jinc_filter2d makes a more familiar kernel.

    change jinc to sinc in 2d filter fft out

    And the FFT output for randn noise put through this 2D filter looks about how I'd expect.

    opened by torridgristle 3
Releases(v0.0.6)
Owner
이준혁(Junhyeok Lee)
Audio/Speech Deep Learning Researcher @mindslab-ai
이준혁(Junhyeok Lee)
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022