The Official PyTorch Implementation of DiscoBox.

Overview

NVIDIA Source Code License Python 3.8

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Paper | Project page | Demo (Youtube) | Demo (Bilibili)

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
Shiyi Lan, Zhiding Yu, Chris Choy, Subhashree Radhakrishnan, Guilin Liu, Yuke Zhu, Larry Davis, Anima Anandkumar
International Conference on Computer Vision (ICCV) 2021

This repository contains the official Pytorch implementation of training & evaluation code and pretrained models for DiscoBox. DiscoBox is a state of the art framework that can jointly predict high quality instance segmentation and semantic correspondence from box annotations.

We use MMDetection v2.10.0 as the codebase.

All of our models are trained and tested using automatic mixed precision, which leverages float16 for speedup and less GPU memory consumption.

Installation

This implementation is based on PyTorch==1.9.0, mmcv==2.13.0, and mmdetection==2.10.0

Please refer to get_started.md for installation.

Or you can download the docker image from our dockerhub repository.

Models

Results on COCO val 2017

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 30.7 52.6 30.6 13.3 34.1 45.6
ResNet-101-DCN download 35.3 59.1 35.4 16.9 39.2 53.0
ResNeXt-101-DCN download 37.3 60.4 39.1 17.8 41.1 55.4

Results on COCO test-dev

We also evaluate the models in the section Results on COCO val 2017 with the same weights on COCO test-dev.

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 32.0 53.6 32.6 11.7 33.7 48.4
ResNet-101-DCN download 35.8 59.8 36.4 16.9 38.7 52.1
ResNeXt-101-DCN download 37.9 61.4 40.0 18.0 41.1 53.9

Training

COCO

ResNet-50 (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py 8

ResNet-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py 8

ResNeXt-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x.py 8

Pascal VOC 2012

ResNet-50 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_6x.py 4

ResNet-101 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_6x.py 4

Testing

COCO

ResNet-50 (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py \
     work_dirs/coco_r50_fpn_3x.pth 8 --eval segm

ResNet-101-DCN (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py \
     work_dirs/coco_r101_dcn_fpn_3x.pth 8 --eval segm

ResNeXt-101-DCN (GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x_fp16.py \
     work_dirs/coco_x101_dcn_fpn_3x.pth 8 --eval segm

Pascal VOC 2012 (COCO API)

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 --eval segm

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 --eval segm

Pascal VOC 2012 (Matlab)

Step 1: generate results

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r50_results.json"

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r101_results.json"

Step 2: format conversion

ResNet-50:

python tools/json2mat.pywork_dirs/voc_r50_results.json work_dirs/voc_r50_results.mat

ResNet-101:

python tools/json2mat.pywork_dirs/voc_r101_results.json work_dirs/voc_r101_results.mat

Step 3: evaluation

Please visit BBTP for the evaluation code written in Matlab.

PF-Pascal

Please visit this repository.

LICENSE

Please check the LICENSE file. DiscoBox may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{lan2021discobox,
  title={DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision},
  author={Lan, Shiyi and Yu, Zhiding and Choy, Christopher and Radhakrishnan, Subhashree and Liu, Guilin and Zhu, Yuke and Davis, Larry S and Anandkumar, Anima},
  journal={arXiv preprint arXiv:2105.06464},
  year={2021}
}
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022