Seismic Waveform Inversion Toolbox-1.0

Overview

Seismic Waveform Inversion Toolbox (SWIT-1.0)

By Haipeng Li @ USTC

Contact: [email protected]

First look at SWIT

Contents of SWIT

Workflow of SWIT

SWIT Installation

Step 1: Install gfortran

# Install gcc and gfortran
sudo apt-get install build-essential
sudo apt install gfortran

Step 2 : Install OpenMPI

# Download the latest OpenMPI package, or go to  http://www.open-mpi.org/software/ompi to download the desired version
wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.1.tar.gz 
tar xvfz openmpi-4.1.1.tar.gz
cd openmpi-4.1.1

# Configure the installation files and install OpenMPI (this would take quite a while)
./configure --prefix=/usr/local/openmpi CC=gcc FC=gfortran
make    # make -j8  # use 8 cores to speed up the make process
sudo make install

# Add env path at your ~/.bashrc
vim ~/.bashrc
export PATH=/usr/local/openmpi/bin:$PATH
source ~/.bashrc

# Check OpenMPI is successfully installed
which mpirun

Step 3 : Install Anaconda Environment (Otherwise, just install Python dependencies as you like)

# Anaconda is recommended. For installing Anaconda, please refer to https://docs.anaconda.com/anaconda/install/linux/
# 1. download package from: https://www.anaconda.com/products/individual/download-success
# 2. bash your_downloaded_Anaconda_package

# Create the conda environment for SWIT if you use Anaconda
conda create --name SWIT python=3.7.5
conda activate SWIT

# Install dependencies using USTC mirrors (whether use Anaconda or not)
pip install numpy obspy scipy matplotlib multiprocess PySimpleGUI psutil Pillow -i https://pypi.mirrors.ustc.edu.cn/simple/

Step 4 : Install & Run SWIT

# Complie the fd2dmpi forward solver with the default fortran compiler (mpif90).
# If you want to use other fortran compiler, you can edit the Makefile.config file (line 18) under ~/SWIT-1.0/fd2dmpi/.
cd /your/own/path/to/SWIT-1.0/fd2dmpi/
rm *.mod
make clean
make

# Add fd2dmpi and Python toolbox to the env path at your ~/.bashrc 
vim ~/.bashrc 
export PATH=/your/own/path/to/SWIT-1.0/bin:$PATH
export PYTHONPATH=/your/own/path/to/SWIT-1.0/toolbox
source ~/.bashrc

# Option 1. Run SWIT via GUI
cd /your/own/path/to/SWIT-1.0/toolbox/
python runswit_Linux.py    # or python runswit_MacOS.py 

# Option 2. Run SWIT via the Python script
cd /your/own/path/to/SWIT-1.0/example/some_case/
./run_workflow     # You need to modify all the paths in the Python script before running

# Notice:
# If you use the Intel Compiler, you need to make the following change in forward and adjoint functions in toolbox/solver.py: 
# Before:     
#	   solver_cmd = 'mpirun -np %d  fd2dmpi par=%s' % (mpiproc, parfile)
# After:
#    solver_cmd = 'mpiexec -np %d  fd2dmpi par=%s' % (mpiproc, parfile)

Systems

SWIT-1.0 has been tested on Ubuntu 16.04, 18.04, 20.04, Centos 7.
It seems that SWIT-1.0 cannot run on MacOS properly due to the problem with the Python multiprocess module. 
This issue will be fixed in the near future.

FWI examples (keep updating)

No. Acquisition Model Misfit Features Optimization Size
1 Land Marmousi Waveform - NLCG 481x121, 25 m
2 Land Overthrust Waveform - NLCG 401x101, 25 m
3 Marine Marmousi Waveform - NLCG 481x141, 25 m
4 Marine Overthrust Waveform - NLCG 401x121, 25 m
5 Land Marmousi Traveltime & Waveform 1D initial model NLCG 401x121, 25 m
6 Land Overthrust Waveform Multi-scale Inversion NLCG 401x101, 25 m

Citations :

If you find SWIT is useful, please cite the following work:

1. Li, H., Li, J., Liu, B., Huang, X. (2021). Application of full-waveform tomography on deep seismic profiling dataset for tectonic fault characterization. International Meeting for Applied Geoscience & Energy.

2. Schuster, G. T. (2017). Seismic inversion. Society of Exploration Geophysicists. https://library.seg.org/doi/book/10.1190/1.9781560803423

Few more words:

  1. Simplicity is the Greatest Virtue Ever.

  2. The Seismic WIT always lies within.

You might also like...
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

OpenQuake's Engine for Seismic Hazard and Risk Analysis
OpenQuake's Engine for Seismic Hazard and Risk Analysis

OpenQuake Engine The OpenQuake Engine is an open source application that allows users to compute seismic hazard and seismic risk of earthquakes on a g

UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

efficient neural audio synthesis in the waveform domain
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

Chunked Autoregressive GAN (CARGAN) Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis [paper] [compan

A python package to manage the stored receiver-side Strain Green's Tensor (SGT) database of 3D background models and able to generate Green's function and synthetic waveform

A python package to manage the stored receiver-side Strain Green's Tensor (SGT) database of 3D background models and able to generate Green's function and synthetic waveform

WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Style-based Neural Drum Synthesis with GAN inversion
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 Chunkmogrify: Real image inversion via Segments
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

Official implementation for
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Comments
  • Problem make installing the package

    Problem make installing the package

    Hi Haipeng,

    I am installing this package on my macbook pro M1. I have openmpi installed:

     mpif90 --version
    GNU Fortran (Homebrew GCC 11.2.0_3) 11.2.0
    Copyright (C) 2021 Free Software Foundation, Inc.
    This is free software; see the source for copying conditions.  There is NO
    warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
    

    However, when I run make in the fd2dmpi folder I got the following error indicating grammar error. Could this be a problem with my mpi library?

    ❯ make
    /opt/homebrew/bin/mpif90 -o .obj/global.o global.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/parser.o parser.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/datatype.o datatype.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/mmi_mpi.o mmi_mpi.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/string.o string.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/su.o su.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/io.o io.f90 -O3 -w  -c -funroll-loops -J.mod
    io.f90:296:17:
    
      296 |   call MPI_BCAST(den(:,ix),nz_pml,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
          |                 1
    ......
      798 | call MPI_BCAST(fs,nx_pml,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
          |               2
    Error: Type mismatch between actual argument at (1) and actual argument at (2) (REAL(4)/INTEGER(4)).
    io.f90:261:17:
    

    Best, Xin

    opened by RunningXinLiu 11
  • Questions about free surface

    Questions about free surface

    Thank you for your work.

    PML =50, whether free surface is set to Yes or No and the result seems to be the same. I don't know why.

    In addition, on line 154 of base.py, "self.nz_pml = self.nz + self.pml * (2 - self.fs)". Can you explain what it means and where self.nz_pml is used

    I would appreciate it if you could take some time to answer my questions.

    opened by ZYX68926 1
  • The data filtering becomes very slow due to large OMP_NUM_THREADS for Scipy

    The data filtering becomes very slow due to large OMP_NUM_THREADS for Scipy

    I add a default specification for OMP_NUM_THREADS in base.py (Line 70):

    os.environ["OMP_NUM_THREADS"] = "1" # export OMP_NUM_THREADS=1

    The data filtering speed is faster now.

    opened by Haipeng-ustc 0
Releases(v1.0.0)
Owner
Haipeng Li
I'm a geophysics graduate student.
Haipeng Li
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
python partial dependence plot toolbox

PDPbox python partial dependence plot toolbox Motivation This repository is inspired by ICEbox. The goal is to visualize the impact of certain feature

Li Jiangchun 723 Jan 07, 2023
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
Flow-based visual scripting for Python

A simple visual node editor for Python Ryven combines flow-based visual scripting with Python. It gives you absolute freedom for your nodes and a simp

Leon Thomm 3.1k Jan 06, 2023
This is a place where I'm playing around with pandas to analyze data in a csv/excel file.

pandas-csv-excel-analysis This is a place where I'm playing around with pandas to analyze data in a csv/excel file. 0-start A very simple cheat sheet

Chuqin 3 Oct 05, 2022
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

JoelImgu 3 Dec 14, 2022
Chem: collection of mostly python code for molecular visualization, QM/MM, FEP, etc

chem: collection of mostly python code for molecular visualization, QM/MM, FEP,

5 Sep 02, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
Dimensionality reduction in very large datasets using Siamese Networks

ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis

beringresearch 284 Jan 01, 2023
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
WebApp served by OAK PoE device to visualize various streams, metadata and AI results

DepthAI PoE WebApp | Bootstrap 4 & Vue.js SPA Dashboard Based on dashmin (https:

Luxonis 6 Apr 09, 2022
DrawBot lets you draw images taken from the internet on Skribbl.io, Gartic Phone and Paint

DrawBot You don't speak french? No worries, english translation is over here. C'est quoi ? DrawBot est un logiciel codé par V2F qui va prendre possess

V2F 205 Jan 01, 2023
A research of IT labor market based especially on hh.ru. Salaries, rate of technologies and etc.

hh_ru_research Проект реализован в учебных целях анализа рынка труда, в особенности по hh.ru Input data В качестве входных данных используются сериали

3 Sep 07, 2022
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022