EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs.

Overview

EPViz (EEG Prediction Visualizer)

EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs. A lightweight and standalone software package developed in Python, EPViz allows researchers to load a PyTorch deep learning model, apply it to the EEG, and overlay the output channel-wise or subject-level temporal predictions on top of the original time series. 

Installation:

Clone the repository git clone https://github.com/jcraley/epviz.git

Python >= 3.7 is required. Other packages can be installed by creating a virtual environment and using the provided requirements.txt file.

To create the virtual environment:

python3 -m venv eeg-gui-venv

Activate the environment (MacOS and Linux):

source eeg-gui-venv/bin/activate

Activate the environment (Windows):

.\eeg-gui-venv\Scripts\activate

Install required packages:

pip install numpy==1.21.2
pip install -r requirements.txt

Running the visualizer:

You can then run the visualizer from the main folder using
python visualization/plot.py

For more command line options, see the section below.

Find an issue? Let us know..

Documentation:

You can find documentation here.

Features:

EDF files:
Average reference and longitudinal bipolar montages with the typical channel naming conventions are supported. Other channels can be plotted but will not be considered part of the montage.

Loading predictions:
Predictions can be loaded as pytorch (.pt) files or using preprocessed data and a model (also saved as .pt files). In both cases, the output is expected to be of length (number of samples in the edf file / k) = c where k and c are integers. Channel-wise predictions will be plotted starting from the top of the screen.

Saving to .edf:
This will save the signals that are currently being plotted. If the signals are filtered and predictions are plotted, filtered signals will be saved and predictions will be saved as well.

Saving to .png:
This will save an image of the current graph along with any predictions that are plotted.

Command line options:

We have added command line options to streamline use:

python visualization/plot.py --show {0 | 1} --fn [EDF_FILE] --montage-file [TXT_FILE] 
--predictions-file [PT_FILE] --prediction-thresh [THRESH]
--filter {0 | 1} [LOW_PASS_FS] [HIGH_PASS_FS] [NOTCH_FS] [BAND_PASS_FS_1] [BAND_PASS_FS_2] 
--location [INT] --window-width {5 | 10 | 15 | 20 | 25 | 30} --export-png-file [PNG_FILE]
--plot-title [TITLE] --print-annotations {0 | 1} --line-thickness [THICKNESS] --font-size [FONT_SIZE]
--save-edf-fn [EDF_FILE] --anonymize-edf {0 | 1}

These options include:

  • Whether or not to show the visualizer
  • The .edf file to load
  • What montage to use
  • Predictions to load
  • Threshold to use for the predictions
  • Filter specifications
  • Where in time to load the graph
  • How many seconds to show in the window
  • Name of .png file to save the graph
    • The title of the saved graph
    • Whether to show annotations on the saved graph
    • Line thickness of the saved graph
    • Font size for the saved graph
  • Name of the .edf file to save
    • Whether or not to anonymize the file

Tests:

Unit tests are located in the tests directory. To run the tests:

./run_tests

All tests will be run via a Github Action when pull requests are created.

Style guide:

We are using Pylint to ensure quality code style in accordance with PEP 8 guidelines.

To run Pylint on the visualizer code:

./run_pylint

Test files:

Test files come from the CHB-MIT database 1, 2 and the TUH EEG Corpus 3. The license for the CHB-MIT data can be found here.

The test files used in this repo are chb01_03 (from CHB) and 00013145_s004_t004 (from TUH). They have been renamed for convenience.

Citations for CHB-MIT dataset:

  1. Ali Shoeb. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis, Massachusetts Institute of Technology, September 2009.
  2. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
Owner
Jeff
Jeff
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

visualize_ML visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build

Ayush Singh 164 Dec 12, 2022
Backend app for visualizing CANedge log files in Grafana (directly from local disk or S3)

CANedge Grafana Backend - Visualize CAN/LIN Data in Dashboards This project enables easy dashboard visualization of log files from the CANedge CAN/LIN

13 Dec 15, 2022
A tool to plot and execute Rossmos's Formula, that helps to catch serial criminals using mathematics

Rossmo Plotter A tool to plot and execute Rossmos's Formula using python, that helps to catch serial criminals using mathematics Author: Amlan Saha Ku

Amlan Saha Kundu 3 Aug 29, 2022
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
A streamlit component for bi-directional communication with bokeh plots.

Streamlit Bokeh Events A streamlit component for bi-directional communication with bokeh plots. Its just a workaround till streamlit team releases sup

Ashish Shukla 123 Dec 25, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
This is a Cross-Platform Plot Manager for Chia Plotting that is simple, easy-to-use, and reliable.

Swar's Chia Plot Manager A plot manager for Chia plotting: https://www.chia.net/ Development Version: v0.0.1 This is a cross-platform Chia Plot Manage

Swar Patel 1.3k Dec 13, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
A blender import/export system for Defold

defold-blender-export A Blender export system for the Defold game engine. Setup Notes There are no exhaustive documents for this tool yet. Its just no

David Lannan 27 Dec 30, 2022
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to gen

Dechao Meng 83 Nov 26, 2022
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
Editor and Presenter for Manim Generated Content.

Editor and Presenter for Manim Generated Content. Take a look at the Working Example. More information can be found on the documentation. These Browse

Manim Community 149 Dec 29, 2022
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
Scientific measurement library for instruments, experiments, and live-plotting

PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a

PyMeasure 445 Jan 04, 2023