Deep High-Resolution Representation Learning for Human Pose Estimation

Overview

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019)

News

Introduction

This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.

Illustrating the architecture of the proposed HRNet

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean [email protected]
pose_resnet_50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0
pose_resnet_101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 34.0
pose_resnet_152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 35.0
pose_hrnet_w32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 37.7

Note:

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_50 256x192 34.0M 8.9 0.704 0.886 0.783 0.671 0.772 0.763 0.929 0.834 0.721 0.824
pose_resnet_50 384x288 34.0M 20.0 0.722 0.893 0.789 0.681 0.797 0.776 0.932 0.838 0.728 0.846
pose_resnet_101 256x192 53.0M 12.4 0.714 0.893 0.793 0.681 0.781 0.771 0.934 0.840 0.730 0.832
pose_resnet_101 384x288 53.0M 27.9 0.736 0.896 0.803 0.699 0.811 0.791 0.936 0.851 0.745 0.858
pose_resnet_152 256x192 68.6M 15.7 0.720 0.893 0.798 0.687 0.789 0.778 0.934 0.846 0.736 0.839
pose_resnet_152 384x288 68.6M 35.3 0.743 0.896 0.811 0.705 0.816 0.797 0.937 0.858 0.751 0.863
pose_hrnet_w32 256x192 28.5M 7.1 0.744 0.905 0.819 0.708 0.810 0.798 0.942 0.865 0.757 0.858
pose_hrnet_w32 384x288 28.5M 16.0 0.758 0.906 0.825 0.720 0.827 0.809 0.943 0.869 0.767 0.871
pose_hrnet_w48 256x192 63.6M 14.6 0.751 0.906 0.822 0.715 0.818 0.804 0.943 0.867 0.762 0.864
pose_hrnet_w48 384x288 63.6M 32.9 0.763 0.908 0.829 0.723 0.834 0.812 0.942 0.871 0.767 0.876

Note:

Results on COCO test-dev2017 with detector having human AP of 60.9 on COCO test-dev2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_152 384x288 68.6M 35.3 0.737 0.919 0.828 0.713 0.800 0.790 0.952 0.856 0.748 0.849
pose_hrnet_w48 384x288 63.6M 32.9 0.755 0.925 0.833 0.719 0.815 0.805 0.957 0.874 0.763 0.863
pose_hrnet_w48* 384x288 63.6M 32.9 0.770 0.927 0.845 0.734 0.831 0.820 0.960 0.886 0.778 0.877

Note:

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v1.0.0 following official instruction. Note that if you use pytorch's version < v1.0.0, you should following the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  6. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── tools 
    ├── README.md
    └── requirements.txt
    
  7. Download pretrained models from our model zoo(GoogleDrive or OneDrive)

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- hrnet_w32-36af842e.pth
             |   |-- hrnet_w48-8ef0771d.pth
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet101-5d3b4d8f.pth
             |   `-- resnet152-b121ed2d.pth
             |-- pose_coco
             |   |-- pose_hrnet_w32_256x192.pth
             |   |-- pose_hrnet_w32_384x288.pth
             |   |-- pose_hrnet_w48_256x192.pth
             |   |-- pose_hrnet_w48_384x288.pth
             |   |-- pose_resnet_101_256x192.pth
             |   |-- pose_resnet_101_384x288.pth
             |   |-- pose_resnet_152_256x192.pth
             |   |-- pose_resnet_152_384x288.pth
             |   |-- pose_resnet_50_256x192.pth
             |   `-- pose_resnet_50_384x288.pth
             `-- pose_mpii
                 |-- pose_hrnet_w32_256x256.pth
                 |-- pose_hrnet_w48_256x256.pth
                 |-- pose_resnet_101_256x256.pth
                 |-- pose_resnet_152_256x256.pth
                 `-- pose_resnet_50_256x256.pth
    
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Training and Testing

Testing on MPII dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_mpii/pose_hrnet_w32_256x256.pth

Training on MPII dataset

python tools/train.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml

Testing on COCO val2017 dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth \
    TEST.USE_GT_BBOX False

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \

Other applications

Many other dense prediction tasks, such as segmentation, face alignment and object detection, etc. have been benefited by HRNet. More information can be found at Deep High-Resolution Representation Learning.

Citation

If you use our code or models in your research, please cite with:

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022