Deep High-Resolution Representation Learning for Human Pose Estimation

Overview

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019)

News

Introduction

This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.

Illustrating the architecture of the proposed HRNet

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean [email protected]
pose_resnet_50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0
pose_resnet_101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 34.0
pose_resnet_152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 35.0
pose_hrnet_w32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 37.7

Note:

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_50 256x192 34.0M 8.9 0.704 0.886 0.783 0.671 0.772 0.763 0.929 0.834 0.721 0.824
pose_resnet_50 384x288 34.0M 20.0 0.722 0.893 0.789 0.681 0.797 0.776 0.932 0.838 0.728 0.846
pose_resnet_101 256x192 53.0M 12.4 0.714 0.893 0.793 0.681 0.781 0.771 0.934 0.840 0.730 0.832
pose_resnet_101 384x288 53.0M 27.9 0.736 0.896 0.803 0.699 0.811 0.791 0.936 0.851 0.745 0.858
pose_resnet_152 256x192 68.6M 15.7 0.720 0.893 0.798 0.687 0.789 0.778 0.934 0.846 0.736 0.839
pose_resnet_152 384x288 68.6M 35.3 0.743 0.896 0.811 0.705 0.816 0.797 0.937 0.858 0.751 0.863
pose_hrnet_w32 256x192 28.5M 7.1 0.744 0.905 0.819 0.708 0.810 0.798 0.942 0.865 0.757 0.858
pose_hrnet_w32 384x288 28.5M 16.0 0.758 0.906 0.825 0.720 0.827 0.809 0.943 0.869 0.767 0.871
pose_hrnet_w48 256x192 63.6M 14.6 0.751 0.906 0.822 0.715 0.818 0.804 0.943 0.867 0.762 0.864
pose_hrnet_w48 384x288 63.6M 32.9 0.763 0.908 0.829 0.723 0.834 0.812 0.942 0.871 0.767 0.876

Note:

Results on COCO test-dev2017 with detector having human AP of 60.9 on COCO test-dev2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_152 384x288 68.6M 35.3 0.737 0.919 0.828 0.713 0.800 0.790 0.952 0.856 0.748 0.849
pose_hrnet_w48 384x288 63.6M 32.9 0.755 0.925 0.833 0.719 0.815 0.805 0.957 0.874 0.763 0.863
pose_hrnet_w48* 384x288 63.6M 32.9 0.770 0.927 0.845 0.734 0.831 0.820 0.960 0.886 0.778 0.877

Note:

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v1.0.0 following official instruction. Note that if you use pytorch's version < v1.0.0, you should following the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  6. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── tools 
    ├── README.md
    └── requirements.txt
    
  7. Download pretrained models from our model zoo(GoogleDrive or OneDrive)

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- hrnet_w32-36af842e.pth
             |   |-- hrnet_w48-8ef0771d.pth
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet101-5d3b4d8f.pth
             |   `-- resnet152-b121ed2d.pth
             |-- pose_coco
             |   |-- pose_hrnet_w32_256x192.pth
             |   |-- pose_hrnet_w32_384x288.pth
             |   |-- pose_hrnet_w48_256x192.pth
             |   |-- pose_hrnet_w48_384x288.pth
             |   |-- pose_resnet_101_256x192.pth
             |   |-- pose_resnet_101_384x288.pth
             |   |-- pose_resnet_152_256x192.pth
             |   |-- pose_resnet_152_384x288.pth
             |   |-- pose_resnet_50_256x192.pth
             |   `-- pose_resnet_50_384x288.pth
             `-- pose_mpii
                 |-- pose_hrnet_w32_256x256.pth
                 |-- pose_hrnet_w48_256x256.pth
                 |-- pose_resnet_101_256x256.pth
                 |-- pose_resnet_152_256x256.pth
                 `-- pose_resnet_50_256x256.pth
    
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Training and Testing

Testing on MPII dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_mpii/pose_hrnet_w32_256x256.pth

Training on MPII dataset

python tools/train.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml

Testing on COCO val2017 dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth \
    TEST.USE_GT_BBOX False

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \

Other applications

Many other dense prediction tasks, such as segmentation, face alignment and object detection, etc. have been benefited by HRNet. More information can be found at Deep High-Resolution Representation Learning.

Citation

If you use our code or models in your research, please cite with:

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022