duralava is a neural network which can simulate a lava lamp in an infinite loop.

Related tags

Deep Learningduralava
Overview

duralava

duralava is a neural network which can simulate a lava lamp in an infinite loop.

Example

This is not a real lava lamp but a "fake" one generated by duralava.

duralava neural network deep learning lava lamp

Novelty

duralava can

  • learn a physical process (a lava lamp).
  • generate an arbitarily long sequence of output, without diverging even after hours (outputting tens of thousands of frames).

How it works

Generative Adversarial Networks (GANs) can learn to generate new samples of data. For example, a GAN can be trained to output images of a lava lamp which look as real as possible. To accomplish this, the GAN gets an input vector with normally distributed noise. For duralava this vector is of length 64. Based on this random noise vector it generates a lava lamp image. The random vector thus encodes the state of the lava lamp.

For training, the GAN is presented a real image of a lava lamp and also one of the fake lava lamp and then it learns to make the fake ones look as real as possible.

For a lava lamp, a sequence of images has to be created. This sequence should in fact be infinite since a lava lamp can run forever. Thus the GAN should learn to output an arbitrarily long sequence of lava lamp images as a video. This is achieved by using a recurrent neural network (RNN). The RNN gets the 64 element noise vector of time step t and outputs the 64 element noise vector for time stemp t+1.

The tricky part is to make sure that the state of the lava lamp (the 64 element random noise vector) remains stable. It could for example happen that over time the distribution of noise in the vector diverges from a normal distribution the mean becomes 10 and the standard deviation 52. In this case, the output images of the lava lamps wouldn't be correct anymore as the GAN was trained to expect the input vector to be normally distributed. To solve this problem, I make sure that in training the output of the RNN stays normally distributed. This is accomplished by adding penalization terms in the training which discourage the noise to diverge from the normal distribution.

Low-hanging fruit

I trained on a MacBook Air with an M1 SoC with 16 GB of shared memory for CPU and GPU. Thus, memory was the limiting factor in my experiments.

With more memory, one could

  • Increase the resolution (currently 64x64 pixels)
  • Increase the training sequence length (currently 20)
  • Increase the batch size (currently 32)
Owner
Maximilian Bachl
Maximilian Bachl
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023