[SDM 2022] Towards Similarity-Aware Time-Series Classification

Related tags

Deep LearningSimTSC
Overview

SimTSC

This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Series Classification (SimTSC), a conceptually simple and general framework that models similarity information with graph neural networks (GNNs). We formulate time-series classification as a node classification problem in graphs, where the nodes correspond to time-series, and the links correspond to pair-wise similarities. overview

Installation

pip3 install -r requirements.txt

Datasets

We provide an example dataset Coffee in this repo. You may download the full UCR datasets here. Multivariate datasets are provided in this link.

Quick Start

We use Coffee as an example to show how to run the code. You may easily try other datasets with arguments --dataset. We will show how to get the results for DTW+1NN, ResNet, and SimTSC.

First, prepare the dataset with

python3 create_dataset.py

Then install the python wrapper of UCR DTW library with

git clone https://github.com/daochenzha/pydtw.git
cd pydtw
pip3 install -e .
cd ..

Then compute the dtw matrix for Coffee with

python3 create_dtw.py
  1. For DTW+1NN:
python3 train_knn.py
  1. For ResNet:
python3 train_resnet.py
  1. For SimTSC:
python3 train_simtsc.py

All the logs will be saved in logs/

Multivariate Datasets Quick Start

  1. Download the datasets and pre-computed DTW with this link.

  2. Unzip the file and put it into datasets/ folder

  3. Prepare the datasets with

python3 create_dataset.py --dataset CharacterTrajectories
  1. For DTW+1NN:
python3 train_knn.py --dataset CharacterTrajectories
  1. For ResNet:
python3 train_resnet.py --dataset CharacterTrajectories
  1. For SimTSC:
python3 train_simtsc.py --dataset CharacterTrajectories

Descriptions of the Files

  1. create_dataset.py is a script to pre-process dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  • --shot: how many training labels are given in each class
  1. create_dtw.py is a script to calculate pair-wise DTW distances of a dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  1. train_knn.py is a script to do classfication DTW+1NN of a dataset. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  1. train_resnet.py is a script to do classfication of a dataset with ResNet. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  1. train_simtsc.py is a script to do classfication of a dataset with SimTSC. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  • --K: number of neighbors per node in the constructed graph
  • --alpha: the scaling factor of the weights of the constructed graph
Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022