A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Overview

Aboleth

circleCI Documentation Status

A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes inference [2].

Features

Some of the features of Aboleth:

  • Bayesian fully-connected, embedding and convolutional layers using SGVB [2] for inference.
  • Random Fourier and arc-cosine features for approximate Gaussian processes. Optional variational optimisation of these feature weights as per [1].
  • Imputation layers with parameters that are learned as part of a model.
  • Noise Contrastive Priors [3] for better out-of-domain uncertainty estimation.
  • Very flexible construction of networks, e.g. multiple inputs, ResNets etc.
  • Compatible and interoperable with other neural net frameworks such as Keras (see the demos for more information).

Why?

The purpose of Aboleth is to provide a set of high performance and light weight components for building Bayesian neural nets and approximate (deep) Gaussian process computational graphs. We aim for minimal abstraction over pure TensorFlow, so you can still assign parts of the computational graph to different hardware, use your own data feeds/queues, and manage your own sessions etc.

Here is an example of building a simple Bayesian neural net classifier with one hidden layer and Normal prior/posterior distributions on the network weights:

import tensorflow as tf
import aboleth as ab

# Define the network, ">>" implements function composition,
# the InputLayer gives a kwarg for this network, and
# allows us to specify the number of samples for stochastic
# gradient variational Bayes.
net = (
    ab.InputLayer(name="X", n_samples=5) >>
    ab.DenseVariational(output_dim=100) >>
    ab.Activation(tf.nn.relu) >>
    ab.DenseVariational(output_dim=1)
)

X_ = tf.placeholder(tf.float, shape=(None, D))
Y_ = tf.placeholder(tf.float, shape=(None, 1))

# Build the network, nn, and the parameter regularization, kl
nn, kl = net(X=X_)

# Define the likelihood model
likelihood = tf.distributions.Bernoulli(logits=nn).log_prob(Y_)

# Build the final loss function to use with TensorFlow train
loss = ab.elbo(likelihood, kl, N)

# Now your TensorFlow training code here!
...

At the moment the focus of Aboleth is on supervised tasks, however this is subject to change in subsequent releases if there is interest in this capability.

Installation

NOTE: Aboleth is a Python 3 library only. Some of the functionality within it depends on features only found in python 3. Sorry.

To get up and running quickly you can use pip and get the Aboleth package from PyPI:

$ pip install aboleth

For the best performance on your architecture, we recommend installing TensorFlow from sources.

Or, to install additional dependencies required by the demos:

$ pip install aboleth[demos]

To install in develop mode with packages required for development we recommend you clone the repository from GitHub:

$ git clone [email protected]:data61/aboleth.git

Then in the directory that you cloned into, issue the following:

$ pip install -e .[dev]

Getting Started

See the quick start guide to get started, and for more in depth guide, have a look at our tutorials. Also see the demos folder for more examples of creating and training algorithms with Aboleth.

The full project documentation can be found on readthedocs.

References

[1] (1, 2) Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature Expansions for Deep Gaussian Processes. In ICML, 2017.
[2] (1, 2) Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
[3] Hafner, D., Tran, D., Irpan, A., Lillicrap, T. and Davidson, J., 2018. Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors. arXiv preprint arXiv:1807.09289.

License

Copyright 2017 CSIRO (Data61)

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Gradient Institute
Non-profit research institute building ethical AI systems
Gradient Institute
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021