Tutorial on scikit-learn and IPython for parallel machine learning

Overview

Parallel Machine Learning with scikit-learn and IPython

Video Tutorial

Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearranged in part and extended. Look at the title of the of the notebooks to be able to follow along the presentation.

Browse the static notebooks on nbviewer.ipython.org.

Scope of this tutorial:

  • Learn common machine learning concepts and how they match the scikit-learn Estimator API.

  • Learn about scalable feature extraction for text classification and clustering

  • Learn how to perform parallel cross validation and hyper parameters grid search in parallel with IPython.

  • Learn to analyze the kinds of common errors predictive models are subject to and how to refine your modeling to take this analysis into account.

  • Learn to optimize memory allocation on your computing nodes with numpy memory mapping features.

  • Learn how to run a cheap IPython cluster for interactive predictive modeling on the Amazon EC2 spot instances using StarCluster.

Target audience

This tutorial targets developers with some experience with scikit-learn and machine learning concepts in general.

It is recommended to first go through one of the tutorials hosted at scikit-learn.org if you are new to scikit-learn.

You might might also want to have a look at SciPy Lecture Notes first if you are new to the NumPy / SciPy / matplotlib ecosystem.

Setup

Install NumPy, SciPy, matplotlib, IPython, psutil, and scikit-learn in their latest stable version (e.g. IPython 2.2.0 and scikit-learn 0.15.2 at the time of writing).

You can find up to date installation instructions on scikit-learn.org and ipython.org .

To check your installation, launch the ipython interactive shell in a console and type the following import statements to check each library:

>>> import numpy
>>> import scipy
>>> import matplotlib
>>> import psutil
>>> import sklearn

If you don't get any message, everything is fine. If you get an error message, please ask for help on the mailing list of the matching project and don't forget to mention the version of the library you are trying to install along with the type of platform and version (e.g. Windows 8.1, Ubuntu 14.04, OSX 10.9...).

You can exit the ipython shell by typing exit.

Fetching the data

It is recommended to fetch the datasets ahead of time before diving into the tutorial material itself. To do so run the fetch_data.py script in this folder:

python fetch_data.py

Using the IPython notebook to follow the tutorial

The tutorial material and exercises are hosted in a set of IPython executable notebook files.

To run them interactively do:

$ cd notebooks
$ ipython notebook

This should automatically open a new browser window listing all the notebooks of the folder.

You can then execute the cell in order by hitting the "Shift-Enter" keys and watch the output display directly under the cell and the cursor move on to the next cell. Go to the "Help" menu for links to the notebook tutorial.

Credits

Some of this material is adapted from the scipy 2013 tutorial:

http://github.com/jakevdp/sklearn_scipy2013

Original authors:

Owner
Olivier Grisel
Machine Learning Engineer a Inria Saclay (Parietal team).
Olivier Grisel
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022