Cross-Document Coreference Resolution

Related tags

Deep Learningcoref
Overview

Cross-Document Coreference Resolution

This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in our papers:

The models are trained on ECB+, but they can be used for any setting of multiple documents.

Getting started

  • Install python3 requirements pip install -r requirements.txt

Extract mentions and raw text from ECB+

Run the following script in order to extract the data from ECB+ dataset and build the gold conll files. The ECB+ corpus can be downloaded here.

python get_ecb_data.py --data_path path_to_data

Training Instructions

The core of our model is the pairwise scorer between two spans, which indicates how likely two spans belong to the same cluster.

Training method

We present 3 ways to train this pairwise scorer:

  1. Pipeline: first train a span scorer, then train the pairwise scorer using the same spans at each epoch.
  2. Continue: pre-train the span scorer, then train the pairwise scorer while keep training the span scorer.
  3. End-to-end: train together both models from scratch.

In order to choose the training method, you need to set the value of the training_method in the config_pairwise.json to pipeline, continue or e2e. In our paper, we found the continue method to perform the best for event coreference and we apply it for entity and ALL as well.

What are the labels ?

In ECB+, the entity and event coreference clusters are annotated separately, making it possible to train a model only on event or entity coreference. Therefore, our model also allows to be trained on events, entity, or both. You need to set the value of the mention_type in the config_pairwise.json (and config_span_scorer.json) to events, entities or mixed (corresponding to ALL in the paper).

Running the model

In both pipeline and continue methods, you need to first run the span scorer model

python train_span_scorer --config configs/config_span_scorer.json

For the pairwise scorer, run the following script

python train_pairwise_scorer --config configs/config_pairwise.json

Some important parameters in config_pairwise.json:

  • max_mention_span
  • top_k: pruning coefficient
  • training_method: (pipeline, continue, e2e)
  • subtopic: (true, false) whether to train at the topic or subtopic level (ECB+ notions).

Tuning threshold for agglomerative clustering

The training above will save 10 models (one for each epoch) in the specified directory, while each model is composed of a span_repr, a span scorer and a pairwise scorer. In order to find the best model and the best threshold for the agglomerative clustering, you need to do an hyperparameter search on the 10 models + several values for threshold, evaluated on the dev set. To do that, please set the config_clustering.json (split: dev) and run the two following scripts:

python tuned_threshold.py --config configs/config_clustering.json

python run_scorer.py [path_of_directory_of_conll_files] [mention_type]

Prediction

Given the trained pairwise scorer, the best model_num and the threshold from the above training and tuning, set the config_clustering.json (split: test) and run the following script.

python predict.py --config configs/config_clustering

(model_path corresponds to the directory in which you've stored the trained models)

An important configuration in the config_clustering is the topic_level. If you set false , you need to provide the path to the predicted topics in predicted_topics_path to produce conll files at the corpus level.

Evaluation

The output of the predict.py script is a file in the standard conll format. Then, it's straightforward to evaluate it with its corresponding gold conll file (created in the first step), using the official conll coreference scorer that you can find here or the coval system (python implementation).

Make sure to use the gold files of the same evaluation level (topic or corpus) as the predictions.

Notes

  • If you chose to train the pairwise with the end-to-end method, you don't need to provide a span_repr_path or a span_scorer_path in the config_pairwise.json.

  • If you use this model with gold mentions, the span scorer is not relevant, you should ignore the training method.

  • If you're interested in a newer but heavier model, check out our cross-encoder model

Team

Owner
Arie Cattan
PhD candidate, Computer Science, Bar-Ilan University
Arie Cattan
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023