Cross-Document Coreference Resolution

Related tags

Deep Learningcoref
Overview

Cross-Document Coreference Resolution

This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in our papers:

The models are trained on ECB+, but they can be used for any setting of multiple documents.

Getting started

  • Install python3 requirements pip install -r requirements.txt

Extract mentions and raw text from ECB+

Run the following script in order to extract the data from ECB+ dataset and build the gold conll files. The ECB+ corpus can be downloaded here.

python get_ecb_data.py --data_path path_to_data

Training Instructions

The core of our model is the pairwise scorer between two spans, which indicates how likely two spans belong to the same cluster.

Training method

We present 3 ways to train this pairwise scorer:

  1. Pipeline: first train a span scorer, then train the pairwise scorer using the same spans at each epoch.
  2. Continue: pre-train the span scorer, then train the pairwise scorer while keep training the span scorer.
  3. End-to-end: train together both models from scratch.

In order to choose the training method, you need to set the value of the training_method in the config_pairwise.json to pipeline, continue or e2e. In our paper, we found the continue method to perform the best for event coreference and we apply it for entity and ALL as well.

What are the labels ?

In ECB+, the entity and event coreference clusters are annotated separately, making it possible to train a model only on event or entity coreference. Therefore, our model also allows to be trained on events, entity, or both. You need to set the value of the mention_type in the config_pairwise.json (and config_span_scorer.json) to events, entities or mixed (corresponding to ALL in the paper).

Running the model

In both pipeline and continue methods, you need to first run the span scorer model

python train_span_scorer --config configs/config_span_scorer.json

For the pairwise scorer, run the following script

python train_pairwise_scorer --config configs/config_pairwise.json

Some important parameters in config_pairwise.json:

  • max_mention_span
  • top_k: pruning coefficient
  • training_method: (pipeline, continue, e2e)
  • subtopic: (true, false) whether to train at the topic or subtopic level (ECB+ notions).

Tuning threshold for agglomerative clustering

The training above will save 10 models (one for each epoch) in the specified directory, while each model is composed of a span_repr, a span scorer and a pairwise scorer. In order to find the best model and the best threshold for the agglomerative clustering, you need to do an hyperparameter search on the 10 models + several values for threshold, evaluated on the dev set. To do that, please set the config_clustering.json (split: dev) and run the two following scripts:

python tuned_threshold.py --config configs/config_clustering.json

python run_scorer.py [path_of_directory_of_conll_files] [mention_type]

Prediction

Given the trained pairwise scorer, the best model_num and the threshold from the above training and tuning, set the config_clustering.json (split: test) and run the following script.

python predict.py --config configs/config_clustering

(model_path corresponds to the directory in which you've stored the trained models)

An important configuration in the config_clustering is the topic_level. If you set false , you need to provide the path to the predicted topics in predicted_topics_path to produce conll files at the corpus level.

Evaluation

The output of the predict.py script is a file in the standard conll format. Then, it's straightforward to evaluate it with its corresponding gold conll file (created in the first step), using the official conll coreference scorer that you can find here or the coval system (python implementation).

Make sure to use the gold files of the same evaluation level (topic or corpus) as the predictions.

Notes

  • If you chose to train the pairwise with the end-to-end method, you don't need to provide a span_repr_path or a span_scorer_path in the config_pairwise.json.

  • If you use this model with gold mentions, the span scorer is not relevant, you should ignore the training method.

  • If you're interested in a newer but heavier model, check out our cross-encoder model

Team

Owner
Arie Cattan
PhD candidate, Computer Science, Bar-Ilan University
Arie Cattan
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023