[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

Overview

A Strong Single-Stage Baseline for Long-Tailed Problems

Python PyTorch

This project provides a strong single-stage baseline for Long-Tailed Classification (under ImageNet-LT, Long-Tailed CIFAR-10/-100 datasets), Detection, and Instance Segmentation (under LVIS dataset). It is also a PyTorch implementation of the NeurIPS 2020 paper Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect, which proposes a general solution to remove the bad momentum causal effect for a variety of Long-Tailed Recognition tasks. The codes are organized into three folders:

  1. The classification folder supports long-tailed classification on ImageNet-LT, Long-Tailed CIFAR-10/CIFAR-100 datasets.
  2. The lvis_old folder (deprecated) supports long-tailed object detection and instance segmentation on LVIS V0.5 dataset, which is built on top of mmdet V1.1.
  3. The latest version of long-tailed detection and instance segmentation is under lvis1.0 folder. Since both LVIS V0.5 and mmdet V1.1 are no longer available on their homepages, we have to re-implement our method on mmdet V2.4 using LVIS V1.0 annotations.

Slides

If you want to present our work in your group meeting / introduce it to your friends / seek answers for some ambiguous parts in the paper, feel free to use our slides. It has two versions: one-hour full version and five-minute short version.

Installation

The classification part allows the lower version of the following requirements. However, in detection and instance segmentation (mmdet V2.4), I tested some lower versions of python and pytorch, which are all failed. If you want to try other environments, please check the updates of mmdetection.

Requirements:

  • PyTorch >= 1.6.0
  • Python >= 3.7.0
  • CUDA >= 10.1
  • torchvision >= 0.7.0
  • gcc version >= 5.4.0

Step-by-step installation

conda create -n longtail pip python=3.7 -y
source activate longtail
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
pip install pyyaml tqdm matplotlib sklearn h5py

# download the project
git clone https://github.com/KaihuaTang/Long-Tailed-Recognition.pytorch.git
cd Long-Tailed-Recognition.pytorch

# the following part is only used to build mmdetection 
cd lvis1.0
pip install mmcv-full
pip install mmlvis
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

Additional Notes

When we wrote the paper, we are using lvis V0.5 and mmdet V1.1 for our long-tailed instance segmentation experiments, but they've been deprecated by now. If you want to reproduce our results on lvis V0.5, you have to find a way to build mmdet V1.1 environments and use the code in lvis_old folder.

Datasets

ImageNet-LT

ImageNet-LT is a long-tailed subset of original ImageNet, you can download the dataset from its homepage. After you download the dataset, you need to change the data_root of 'ImageNet' in ./classification/main.py file.

CIFAR-10/-100

When you run the code for the first time, our dataloader will automatically download the CIFAR-10/-100. You need to set the data_root in ./classification/main.py to the path where you want to put all CIFAR data.

LVIS

Large Vocabulary Instance Segmentation (LVIS) dataset uses the COCO 2017 train, validation, and test image sets. If you have already downloaded the COCO images, you only need to download the LVIS annotations. LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split.

You need to put all the annotations and images under ./data/LVIS like this:

data
  |-- LVIS
    |--lvis_v1_train.json
    |--lvis_v1_val.json
      |--images
        |--train2017
          |--.... (images)
        |--test2017
          |--.... (images)
        |--val2017
          |--.... (images)

Getting Started

For long-tailed classification, please go to [link]

For long-tailed object detection and instance segmentation, please go to [link]

Advantages of the Proposed Method

  • Compared with previous state-of-the-art Decoupling, our method only requires one-stage training.
  • Most of the existing methods for long-tailed problems are using data distribution to conduct re-sampling or re-weighting during training, which is based on an inappropriate assumption that you can know the future distribution before you start to learn. Meanwhile, the proposed method doesn't need to know the data distribution during training, we only need to use an average feature for inference after we train the model.
  • Our method can be easily transferred to any tasks. We outperform the previous state-of-the-arts Decoupling, BBN, OLTR in image classification, and we achieve better results than 2019 Winner of LVIS challenge EQL in long-tailed object detection and instance segmentation (under the same settings with even fewer GPUs).

Citation

If you find our paper or this project helps your research, please kindly consider citing our paper in your publications.

@inproceedings{tang2020longtailed,
  title={Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect},
  author={Tang, Kaihua and Huang, Jianqiang and Zhang, Hanwang},
  booktitle= {NeurIPS},
  year={2020}
}
Owner
Kaihua Tang
@kaihuatang.github.io/
Kaihua Tang
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022