QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

Overview

QR2Pass

This is a proof of concept for an alternative (passwordless) authentication system to a web server. The authentication is based on public key cryptographic challenges, that can correctly responded only by the owner of the private key. Challenges are presented in the form of a QR code which are scanned by the mobile app.

The project is based on the procedure proposed by the Snap2Pass paper, but not on the corresponding implementation. In contrast to Snap2Pass, it offers only public key authentication (i.e no shared secret) and there is no OpenID integration.

The server is written in Django and the client (mobile app) is written in Swift for the iOS platform

You can check an online version of the server here

Overview

During registration, user provides their public key to the server. For authentication, server presents a challenge (unique nonce that expires after 60 seconds). User needs to sign the challenge with their private key part. Server verifies the signature and if it's valid, user is authenticated into the web site.

The web app consists of 2 parts:

  • the core app that handles the web view (what users sees in their browser)
  • the api app that handles the out-of-band communication (to/from the mobile app)

Protocol overview

To complete the registration request, or to initate a login process, the web app (core) constructs QR codes that are scanned by the mobile app

register QR

the registration QR has the following info:

   {
       "version": Int, 
       "email": String, 
       "nonce": String,
       "provider": URL, 
       "respond_to": URL,
       "action": action enum //action.register 
   }
  • version: version of the prorocol (currently ignored)
  • email: the email provided in the registration form. It is currently used as a user identifier
  • nonce: a unique nonce (used to avoid replay attacks)
  • provider: base url for the site (this is the identifier for the site)
  • respond_to: where the client should send its response
  • action: either login or register (register in this case, duh!)

login QR

the login QR has a very similar schema:

    {
        "version": Int,
        "challenge": String,
        "validTill": Date, 
        "provider": URL, 
        "respond_to": URL,
        "action": action.login //action.login 
    }

email, is not provided by the server, but in the client's request (from the mobile app)

Out of band requests/responses

We define as out-of-band the requests between the mobile app and the server (api part) Browser - server (core part) is in-band

Registration

A user needs first to head to the registration page (in their browser) where they are asked for their email. If the email is valid and not already used, a registration QR code is presented (for 60 seconds). The user uses the mobile app to scan the QR code.
The app decodes the QR code (see register schema above) and extracts the URL from the "respond_to field"
If there is no registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

    {
        "version": Int,
        "email": String,
        "public_key": String, 
        "nonce": String 
    }
  • version: version of the prorocol (currently ignored)
  • email: the user's email
  • public_key: the user's public key
  • nonce: the nonce offered by the server

Upon receiving the request, the server will perform the following checks:

  • request has the valid schema
  • the nonce received is a valid one and has not expired.
  • the nonce received, corresponds to the specific user.

If the checks are succesful, server creates a user in its DB and redirects the browser to login page

Server responds using the following schema (out-of-band):

    {
        "version": Int,
        "email": String,
        "status": String, 
        "response_text": String 
    }
  • status: "ok"/"nok"
  • response_text: a message showing more info about the status (e.g "invalid token")

Loging in

A previously registered user can head to the login page to log in. A QR is presented (for 60 seconds) The user uses the mobile app to scan the QR code.
The app decodes the QR code (see login schema above) and extracts the URL from the "respond_to field".
If there is registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

{

    "version": Int,
    "username": String,
    "challenge": String, 
    "response": String 

}
  • username: the email of the user
  • challenge: the nonce provided by the server
  • response: the nonce signed by the private key of the user

Similarly to registration process, server will make some initial checks on the request (valid schema and nonce, etc). If the intial checks succeed, the signed challenge will be checked against the public key of the user (stored during the registration process). If all checks are succesful, user is authenticated in the backend and the browser will be redirected to the user page.

Server responds to the app with a repsonse using the same response schema as the in the registration process

Running the project

Client

The ios app doesn't use any external libraries and it is compatible to ios > 12.4
Keep in mind that iOS won't accept initiating unsecure connections (plain HTTP). See here for more information and ways to circumvent that, in case you want to test this locally.
Alternatively, you can use ngrok to map an external https endpoint to your local machine

Server

pre-requisites

The server uses redis for Django channels backend and for temporary storage (nonces), so you need to have redis running locally or remotely.
It also uses daphne as an asynchronous server. You can invoke daphne by running:

daphne qr2pass.asgi:application --port <PORT> --bind 0.0.0.0 -v2

but locally you can also use the usual runserver command:

python manage.py runserver

requirements

  • create a virtual environment
  • activate it
  • pip3 install -r requirements.txt

Settings

The default settings are defined in the settings/defaults.py file.
You need to fill in some additional settings corresponding to your deployment environment (see deployment-template.py) and define the DJANGO_SETTINGS_MODULE environmental variable for details) to point to your settings (see here)

Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022