🔪 Elimination based Lightweight Neural Net with Pretrained Weights

Overview

ELimNet

ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task

  • Removed top layers from pretrained EfficientNetB0 and ResNet18 to construct lightweight CNN model with less than 1M #params.
  • Assessed on Trash Annotations in Context(TACO) Dataset sampled for 6 classes with 20,851 images.
  • Compared performance with lightweight models generated with Optuna's Neural Architecture Search(NAS) constituted with same convolutional blocks.

Quickstart

Installation

# clone the repository
git clone https://github.com/snoop2head/elimnet

# fetch image dataset and unzip
!wget -cq https://aistages-prod-server-public.s3.amazonaws.com/app/Competitions/000081/data/data.zip
!unzip ./data.zip -d ./

Train

# finetune on the dataset with pretrained model
python train.py --model ./model/efficientnet_b0.yaml

# finetune on the dataset with ElimNet
python train.py --model ./model/efficientnet_b0_elim_3.yaml

Inference

# inference with the lastest ran model
python inference.py --model_dir ./exp/latest/

Performance

Performance is compared with (1) original pretrained model and (2) Optuna NAS constructed models with no pretrained weights.

  • Indicates that top convolutional layers eliminated pretrained CNN models outperforms empty Optuna NAS models generated with same convolutional blocks.
  • Suggests that eliminating top convolutional layers creates lightweight model that shows similar(or better) classifcation performance with original pretrained model.
  • Reduces parameters to 7%(or less) of its original parameters while maintaining(or improving) its performance. Saves inference time by 20% or more by eliminating top convolutional layters.

ELimNet vs Pretrained Models (Train)

[100 epochs] # of Parameters # of Layers Train Validation Test F1
Pretrained EfficientNet B0 4.0M 352 Loss: 0.43
Acc: 81.23%
F1: 0.84
Loss: 0.469
Acc: 82.17%
F1: 0.76
0.7493
EfficientNet B0 Elim 2 0.9M 245 Loss:0.652
Acc: 87.22%
F1: 0.84
Loss: 0.622
Acc: 87.22%
F1: 0.77
0.7603
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7349
Resnet18 11.17M 69 Loss: 0.578
Acc: 78.90%
F1: 0.76
Loss: 0.700
Acc: 76.17%
F1: 0.719
-
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-

ELimNet vs Pretrained Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Pretrained EfficientNet B0 4.0M 352 3.9s 4.0s 105.7s
EfficientNet B0 Elim 2 0.9M 245 4.1s 13.0s 83.4s
EfficientNet B0 Elim 3 0.30M 181 3.0s 9.0s 73.5s
Resnet18 11.17M 69 - - -
Resnet18 Elim 2 0.68M 37 - - -

ELimNet vs Empty Optuna NAS Models (Train)

[100 epochs] # of Parameters # of Layers Train Valid Test F1
Empty MobileNet V3 4.2M 227 Loss 0.925
Acc: 65.18%
F1: 0.58
Loss 0.993
Acc: 62.83%
F1: 0.56
-
Empty EfficientNet B0 1.3M 352 Loss 0.867
Acc: 67.28%
F1: 0.61
Loss 0.898
Acc: 66.80%
F1: 0.61
0.6337
Empty DWConv & InvertedResidualv3 NAS 0.08M 66 - Loss: 0.766
Acc: 71.71%
F1: 0.68
0.6740
Empty MBConv NAS 0.33M 141 Loss: 0.786
Acc: 70.72%
F1: 0.66
Loss: 0.866
Acc: 68.09%
F1: 0.62
0.6245
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7603

ELimNet vs Empty Optuna NAS Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Empty MobileNet V3 4.2M 227 4 13 -
Empty EfficientNet B0 1.3M 352 3.780 3.782 68.4s
Empty DWConv &
InvertedResidualv3 NAS
0.08M 66 1 3.5 61.1s
Empty MBConv NAS 0.33M 141 2.14 7.201 67.1s
Resnet18 Elim 2 0.68M 37 - - -
EfficientNet B0 Elim 3 0.30M 181 3.0s 9s 73.5s

Background & WiP

Background

Work in Progress

  • Will test the performance of replacing convolutional blocks with pretrained weights with a single convolutional layer without pretrained weights.
  • Will add ResNet18's inference time data and compare with Optuna's NAS constructed lightweight model.
  • Will test on pretrained MobileNetV3, MnasNet on torchvision with elimination based lightweight model architecture search.
  • Will be applied on other small datasets such as Fashion MNIST dataset and Plant Village dataset.

Others

  • "Empty" stands for model with no pretrained weights.
  • "EfficientNet B0 Elim 2" means 2 convolutional blocks have been eliminated from pretrained EfficientNet B0. Number next to "Elim" annotates how many convolutional blocks have been removed.
  • Table's performance illustrates best performance out of 100 epochs of finetuning on TACO Dataset.

Authors

Owner
snoop2head
break, compose, display
snoop2head
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023