Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Overview

Improving Contrastive Learning by Visualizing Feature Transformation

This project hosts the codes, models and visualization tools for the paper:

Improving Contrastive Learning by Visualizing Feature Transformation,
Rui Zhu*, Bingchen Zhao*, Jingen Liu, Zhenglong Sun, Chang Wen Chen
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, Oral
arXiv preprint (arXiv 2108.02982)

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

highlights2

Highlights

  • Visualization Tools: We provide a visualization tool for pos/neg score distribution, which enables us to analyze, interpret and understand the contrastive learning process.
  • Feature Transformation: Inspired by the visualization, we propose a simple yet effective feature transformation (FT), which creates both hard positives and diversified negatives to enhance the training. FT enables to learn more view-invariant and discriminative representations.
  • Less Task-biased: FT makes the model less “task-bias”, which means we can achievesignificant performance improvement on various downstream tasks (object detection, instance segmentation, and long-tailed classification).

highlights

Updates

  • Code, pre-trained models and visualization tools are released. (07/08/2021)

Installation

This project is mainly based on the open-source code PyContrast.

Please refer to the INSTALL.md and RUN.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on ImageNet-1K and ImageNet-100.

pre-train method pre-train dataset backbone #epoch ImageNet-1K VOC det AP50 COCO det AP Link
Supervised ImageNet-1K ResNet-50 - 76.1 81.3 38.2 download
MoCo-v1 ImageNet-1K ResNet-50 200 60.6 81.5 38.5 download
MoCo-v1+FT ImageNet-1K ResNet-50 200 61.9 82.0 39.0 download
MoCo-v2 ImageNet-1K ResNet-50 200 67.5 82.4 39.0 download
MoCo-v2+FT ImageNet-1K ResNet-50 200 69.6 83.3 39.5 download
MoCo-v1+FT ImageNet-100 ResNet-50 200 IN-100 result 77.2 - - download

Note:

  • See our paper for more results on different benchmarks.

Usage

Training on IN-1K

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-1K

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset --ckpt your/path/to/pretrain_model   --n_class 1000 --multiprocessing-distributed --world-size 1 --rank 0 --epochs 100 --lr_decay_epochs 60,80

Training on IN-100

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-100

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --n_class 100  --ckpt your/path/to/pretrain_model  --multiprocessing-distributed --world-size 1 --rank 0 

Transferring to Object Detection

Please refer to DenseCL and MoCo for transferring to object detection.

Visualization Tools

  • Our visualization is offline, which almost does not affect the training speed. Instead of storing K (65536) pair scores, we save their statistical mean and variance to represent the scores’ distribution. You can refer to the original paper for the details.

  • Visualization code is line 69-74 to store the scores. And then we further process the scores in the IpythonNotebook for drawing.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Bingchen Zhao
Currently study @ Tongji University, Super interested in DL and its applications
Bingchen Zhao
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022