Lightweight plotting to the terminal. 4x resolution via Unicode.

Related tags

Deep Learninguniplot
Overview

Uniplot

Build Status PyPI Version PyPI Downloads

Lightweight plotting to the terminal. 4x resolution via Unicode.

uniplot demo GIF

When working with production data science code it can be handy to have plotting tool that does not rely on graphics dependencies or works only in a Jupyter notebook.

The use case that this was built for is to have plots as part of your data science / machine learning CI pipeline - that way whenever something goes wrong, you get not only the error and backtrace but also plots that show what the problem was.

Features

  • Unicode drawing, so 4x the resolution (pixels) of usual ASCII plots
  • Super simple API
  • Interactive mode (pass interactive=True)
  • Color mode (pass color=True) useful in particular when plotting multiple series
  • It's fast: Plotting 1M data points takes 100ms thanks to NumPy magic
  • Only one dependency: NumPy (but you have that anyway don't you)

Please note that Unicode drawing will work correctly only when using a font that fully supports the Box-drawing character set. Please refer to this page for a (incomplete) list of supported fonts.

Examples

Note that all the examples are without color and plotting only a single series od data. For using color see the GIF example above.

Plot sine wave

import math
x = [math.sin(i/20)+i/300 for i in range(600)]
from uniplot import plot
plot(x, title="Sine wave")

Result:

                          Sine wave
┌────────────────────────────────────────────────────────────┐
│                                                    ▟▀▚     │
│                                                   ▗▘ ▝▌    │
│                                       ▗▛▜▖        ▞   ▐    │
│                                       ▞  ▜       ▗▌    ▌   │ 2
│                           ▟▀▙        ▗▘  ▝▌      ▐     ▜   │
│                          ▐▘ ▝▖       ▞    ▜      ▌     ▝▌  │
│              ▗▛▜▖        ▛   ▜      ▗▌    ▝▌    ▐▘      ▜  │
│              ▛  ▙       ▗▘   ▝▖     ▐      ▚    ▞       ▝▌ │
│  ▟▀▖        ▐▘  ▝▖      ▟     ▚     ▌      ▝▖  ▗▌        ▜▄│ 1
│ ▐▘ ▐▖       ▛    ▙      ▌     ▐▖   ▗▘       ▚  ▞           │
│ ▛   ▙      ▗▘    ▐▖    ▐       ▙   ▞        ▝▙▟▘           │
│▐▘   ▐▖     ▐      ▌    ▛       ▐▖ ▗▘                       │
│▞     ▌     ▌      ▐   ▗▘        ▜▄▛                        │
│▌─────▐────▐▘───────▙──▞────────────────────────────────────│ 0
│       ▌   ▛        ▝▙▟▘                                    │
│       ▜  ▐▘                                                │
│        ▙▄▛                                                 │
└────────────────────────────────────────────────────────────┘
         100       200       300       400       500       600

Plot global temperature data

Here we're using Pandas to load and prepare gloabl temperature data from the Our World in Data GitHub repository.

First we load the data, rename a column and and filter the data:

import pandas as pd
uri = "https://github.com/owid/owid-datasets/raw/master/datasets/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre.csv"
data = pd.read_csv(uri)
data = data.rename(columns={"Global average temperature anomaly (Hadley Centre)": "Global"})
data = data[data.Entity == "median"]

Then we can plot it:

from uniplot import plot
plot(xs=data.Year, ys=data.Global, lines=True, title="Global normalized land-sea temperature anomaly", y_unit=" °C")

Result:

        Global normalized land-sea temperature anomaly
┌────────────────────────────────────────────────────────────┐
│                                                          ▞▀│
│                                                         ▐  │
│                                                         ▐  │
│                                                     ▗   ▌  │ 0.6 °C
│                                           ▙  ▗▄ ▛▄▖▗▘▌ ▞   │
│                                          ▗▜  ▌ ▜  ▚▞ ▚▞    │
│                                          ▐▝▖▐      ▘       │
│                                    ▗   ▗ ▌ ▙▌              │ 0.3 °C
│                                    ▛▖  ▞▙▘  ▘              │
│                              ▖  ▗▄▗▘▐ ▐▘▜                  │
│                            ▟ █  ▞ ▜ ▝▄▘                    │
│   ▗▚   ▗    ▖       ▗   ▖▗▞ █▐  ▌    ▘                     │
│▁▁▁▞▐▁▁▗▘▜▗▀▀▌▁▁▁▁▙▁▁▟▁▁▁▙▐▁▁▜▁▌▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0 °C
│▚ ▐ ▝▖ ▐  ▛  ▌ ▗▄▐ ▌▗▘▌ ▐▝▌    ▝▘                           │
│ ▌▌  ▌ ▞     ▐▗▘ ▛ ▐▞ ▌ ▐                                   │
│ ▝   ▝▖▌     ▐▞    ▝▌ ▚▜▐                                   │
│      ▗▌     ▝        ▝ ▌                                   │
└────────────────────────────────────────────────────────────┘
1,950    1,960    1,970   1,980    1,990    2,000   2,010

Parameters

The plot function accepts a number of parameters, all listed below. Note that only ys is required, all others are optional.

There is also a plot_to_string function with the same signature, if you want the result as a list of strings, to include the output elsewhere.

Data

  • xs - The x coordinates of the points to plot. Can either be None, or a list or NumPy array for plotting a single series, or a list of those for plotting multiple series. Defaults to None, meaning that the x axis will be just the sample index of ys.
  • ys - The y coordinates of the points to plot. Can either be a list or NumPy array for plotting a single series, or a list of those for plotting multiple series.

Options

In alphabetical order:

  • color - Draw series in color. Defaults to False when plotting a single series, and to True when plotting multiple.
  • height - The height of the plotting region, in characters. Default is 17.
  • interactive - Enable interactive mode. Defaults to False.
  • legend_labels - Labels for the series. Can be None or a list of strings. Defaults to None.
  • lines - Enable lines between points. Can either be True or False, or a list of those values for plotting multiple series. Defaults to False.
  • line_length_hard_cap - Enforce a hard limit on the number of characters per line of the plot area. This may override the width option if there is not enough space. Defaults to None.
  • title - The title of the plot. Defaults to None.
  • width - The width of the plotting region, in characters. Default is 60. Note that if the line_length_hard_cap option is used and there is not enough space, the actual width may be smaller.
  • x_gridlines - A list of x values that have a vertical line for better orientation. Defaults to [0].
  • x_max - Maximum x value of the view. Defaults to a value that shows all data points.
  • x_min - Minimum x value of the view. Defaults to a value that shows all data points.
  • x_unit - Unit of the x axis. This is a string that is appended to the axis labels. Defaults to "".
  • y_gridlines - A list of y values that have a horizontal line for better orientation. Defaults to [0].
  • y_max - Maximum y value of the view. Defaults to a value that shows all data points.
  • y_min - Minimum y value of the view. Defaults to a value that shows all data points.
  • y_unit - Unit of the y axis. This is a string that is appended to the axis labels. Defaults to "".

Experimental features

For convenience there is also a histogram function that accepts one or more series and plots bar-chart like histograms. It will automatically discretize the series into a number of bins given by the bins option and display the result.

When calling the histogram function, the lines option is True by default.

Example:

import numpy as np
x = np.sin(np.linspace(1, 1000))
from uniplot import histogram
histogram(x)

Result:

┌────────────────────────────────────────────────────────────┐
│   ▛▀▀▌                       │                   ▐▀▀▜      │ 5
│   ▌  ▌                       │                   ▐  ▐      │
│   ▌  ▌                       │                   ▐  ▐      │
│   ▌  ▀▀▀▌                    │                ▐▀▀▀  ▝▀▀▜   │ 4
│   ▌     ▌                    │                ▐        ▐   │
│   ▌     ▌                    │                ▐        ▐   │
│   ▌     ▙▄▄▄▄▄▖              │          ▗▄▄▄  ▐        ▐   │ 3
│   ▌           ▌              │          ▐  ▐  ▐        ▐   │
│   ▌           ▌              │          ▐  ▐  ▐        ▐   │
│   ▌           ▌              │          ▐  ▐  ▐        ▐   │
│   ▌           ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜  ▐▀▀▀  ▝▀▀▀        ▐   │ 2
│   ▌                          │    ▐  ▐                 ▐   │
│   ▌                          │    ▐  ▐                 ▐   │
│   ▌                          │    ▐▄▄▟                 ▐   │ 1
│   ▌                          │                         ▐   │
│   ▌                          │                         ▐   │
│▄▄▄▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▐▄▄▄│ 0
└────────────────────────────────────────────────────────────┘
     -1                        0                       1

Installation

Install via pip using:

pip install uniplot

Roadmap

Coming up:

  • Fill area under curve
  • Log scales
  • Add generated page with list of supported fonts
  • Auto-detect color mode depending on terminal capabilities
  • Possibly: Fallback to ASCII characters

Input is always welcome, let me know what is most needed for this to be as useful as possible.

Contributing

Clone this repository, and install dependecies via pip3 install -e .\[dev\]. You can run the tests vie ./run_tests to make sure your setup is good. Then proceed with issues, PRs etc. the usual way.

Comments
  • Get a plot as a string

    Get a plot as a string

    I'm working on a tool that I would love to be able to integrate uniplot into, but I'm running into a problem: I need to capture the output as a string so that I can display it elsewhere. Right now, uniplot.plot prints directly to stdout: https://github.com/olavolav/uniplot/blob/master/uniplot/uniplot.py#L74

    I'm not sure how to square this with the interactive features implemented in that function. Perhaps a helper function could be extracted that returns the plot as a string? Then I could call that function from my tool to get the string that uniplot.plot would have displayed.

    Happy to do the work on this if you can provide some guidance on how you'd like it implemented!

    feature request 
    opened by JoshKarpel 6
  • Requesting Support for Plotting Line Graphs

    Requesting Support for Plotting Line Graphs

    Hi Olav. Appreciate the great work with this project. Found this quite useful in logging some data graphically to the terminal in a few of my Data Science projects. Here is a recommendation for a new feature that can be added. I understand that there is currently support for plotting Scatter Plots and Histograms in Uniplot. Would be great if support for plotting Line Graphs was also added to visualize the trend of data. Kindly look into the possibility of doing this. Thanks.

    feature request 
    opened by ghost 6
  • Missing precision on x axis values, making them identical

    Missing precision on x axis values, making them identical

    Hello Olav, I have noticed a small problem when displaying the x axis values. The values seem to be rounded too much making them identical and equal to 0. It seems to happen when one value is positive, the other negative and the values are close to 0 (+-0.01) I included screenshots of it.

    PS: uniplot feels great, keep it up!

    Screenshot 2021-01-22 at 16 58 48 Screenshot 2021-01-22 at 17 08 59 bug 
    opened by AntoineSto 3
  • [Question] Does Uniplot Support .py files?

    [Question] Does Uniplot Support .py files?

    Hello,

    This is an interesting project! Thank you for taking the time to put it together.

    Quick question:

    When testing out uniplot I'm able to call .plot() from the python console or through ipython, and get a visualization quite easily. However, it does not work when I include uniplot in a .py file and I execute the file.

    # foo.py
    import unipolot as plot
    import math
    x = [math.sin(i / 20) + i / 300 for i in range(600)]
    p = plot(x)
    
    
    $ python foo.py
    Traceback (most recent call last):
      File "foo.py", line 4, in <module>
        p = plot(x)
    TypeError: 'module' object is not callable
    

    Is this expected behaviour, or am I missing something from the docs?

    Thanks,

    question 
    opened by robertdefilippi 2
  • Occasional gaps in lines

    Occasional gaps in lines

    Sometimes there are gaps at the end of lines.

    To reproduce

    >>> from uniplot import plot
    >>> plot(xs=[0.433,0.6666], ys=[0.8,0.1133], x_min=0, x_max=1, y_min=0, y_max=1, lines=True)
    DEBUG indices_slope -0.8571428571428571 slope -2.939640410958905
    DEBUG x_index_start 51
    DEBUG x_index_stop 79
    DEBUG x_indices_of_line [52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
     76 77 78]
    ┌────────────────────────────────────────────────────────────┐
    ││                                                           │ 1.0
    ││                                                           │ 
    ││                                                           │ 
    ││                        ▝▖                                 │ 
    ││                         ▝▚                                │ 0.7
    ││                           ▚                               │ 
    ││                            ▚▖                             │ 
    ││                             ▝▖                            │ 
    ││                              ▝▖                           │ 0.5
    ││                               ▝▚                          │ 
    ││                                 ▚                         │ 
    ││                                  ▚▖                       │ 
    ││                                   ▝▖                      │ 0.3
    ││                                    ▝▖                     │ 
    ││                                     ▝▘                    │ 
    ││                                      ▝                    │ 
    ││▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0.0
    └────────────────────────────────────────────────────────────┘
     0                                                          1
    

    This is not a bug, but an artifact of the line drawing attempting to be accurate. If the end pixel is drawn because of an end pint that is significantly away from the center of the pixel then this is possible.

    Possible solutions

    • The obvious solution would be to draw the line between the middle points of the start and end pixel, not the actual line.
    • An alternative might be to check for gaps and correct it by drawing another pixel.
    opened by olavolav 2
  • Fill area under curve

    Fill area under curve

    This was on the roadmap but have not heard anyone actually request it. So I'll leave the prototypical hack here as an issue in case anyone wants to actually have it.

    So in theory we could have an option like y_fill_level that enables filling the are between the points and a given vertical level, usually the zero line.

    It might look something like:

    plot(ys, title="Sine wave", y_fill_level=-2.5)
                              Sine wave
    ┌────────────────────────────────────────────────────────────┐
    │                                                    ▟█▙     │ 
    │                                                   ▗███▌    │ 
    │                                       ▗██▖        ▟████    │ 
    │                                       ▟███       ▗█████▌   │ 2
    │                           ▟█▙        ▗████▌      ▐██████   │ 
    │                          ▐███▖       ▟█████      ███████▌  │ 
    │              ▗██▖        █████      ▗██████▌    ▐████████  │ 
    │              ███▙       ▗█████▖     ▐██████▙    ▟████████▌ │ 
    │  ▟█▖        ▐████▖      ▟█████▙     ████████▖  ▗██████████▄│ 1
    │ ▐███▖       █████▙      ███████▖   ▗████████▙  ▟███████████│ 
    │ ████▙      ▗██████▖    ▐███████▙   ▟█████████▙▟████████████│ 
    │▐█████▖     ▐██████▌    █████████▖ ▗████████████████████████│ 
    │▟█████▌     ████████   ▗██████████▄█████████████████████████│ 
    │███████────▐████████▙──▟████████████████████████████████████│ 0
    │███████▌   ██████████▙▟█████████████████████████████████████│ 
    │████████  ▐█████████████████████████████████████████████████│ 
    │████████▙▄██████████████████████████████████████████████████│ 
    └────────────────────────────────────────────────────────────┘
             100       200       300       400       500       600
    

    And then with colors it might look like: Screen Shot 2021-05-01 at 18 18 25

    Let me know if this feature would be useful.

    low prio feedback wanted 
    opened by olavolav 1
  • Crash after zooming

    Crash after zooming

    To reproduce:

    from uniplot import plot, histogram
    import numpy as np  # type: ignore
    
    # Exception when zooming in
    
    xs = np.array(
        [
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
            9,
            10,
            11,
            12,
            13,
            14,
            15,
            16,
            17,
            18,
            19,
            20,
            21,
            22,
            23,
            24,
            25,
            26,
            27,
            28,
            29,
            30,
            31,
            32,
            33,
            34,
            35,
            36,
            37,
            38,
            39,
            40,
            41,
            42,
            43,
            44,
            45,
            46,
            47,
            48,
            49,
            50,
            51,
            52,
            53,
            54,
            55,
            56,
            57,
            58,
            59,
            60,
            61,
            62,
            63,
            64,
            65,
            66,
            67,
            68,
            69,
            70,
            71,
            72,
            73,
            74,
            75,
            76,
            77,
            78,
            79,
            80,
            81,
            82,
            83,
            84,
            85,
            86,
            87,
            88,
            89,
            90,
            91,
            92,
            93,
            94,
            95,
            96,
            97,
            98,
            99,
            100,
            101,
            102,
            103,
            104,
            105,
            106,
            107,
            108,
            109,
            110,
            111,
            112,
            113,
            114,
            115,
            116,
            117,
            118,
            119,
            120,
            121,
            122,
            123,
            124,
            125,
            126,
            127,
            128,
            129,
            130,
            131,
            132,
            133,
            134,
            135,
            136,
            137,
            138,
            139,
            140,
            141,
            142,
            143,
            144,
            145,
            146,
            147,
            148,
            149,
            150,
            151,
            152,
            153,
            154,
            155,
            156,
            157,
            158,
            159,
            160,
            161,
            162,
            163,
            164,
            165,
            166,
            167,
            168,
            169,
            170,
            171,
            172,
            173,
            174,
            175,
            176,
            177,
            178,
            179,
            180,
            181,
            182,
            183,
            184,
            185,
            186,
            187,
            188,
            189,
            190,
            191,
            192,
            193,
            194,
            195,
            196,
            197,
            198,
            199,
            200,
            201,
            202,
            203,
            204,
            205,
            206,
            207,
            208,
            209,
            210,
            211,
            212,
            213,
            214,
            215,
            216,
            217,
            218,
            219,
            220,
            221,
            222,
            223,
            224,
            225,
            226,
            227,
            228,
            229,
            230,
            231,
            232,
            233,
            234,
            235,
            236,
            237,
            238,
            239,
            240,
            241,
            242,
            243,
            244,
            245,
            246,
            247,
            248,
            249,
            250,
            251,
            252,
            253,
            254,
            255,
            256,
            257,
            258,
            259,
            260,
            261,
            262,
            263,
            264,
            265,
            266,
            267,
            268,
            269,
            270,
            271,
            272,
            273,
            274,
            275,
            276,
            277,
            278,
            279,
            280,
            281,
            282,
            283,
            284,
            285,
            286,
            287,
            288,
            289,
            290,
            291,
            292,
            293,
            294,
            295,
            296,
            297,
            298,
            299,
            300,
            301,
            302,
            303,
            304,
            305,
            306,
            307,
            308,
            309,
            310,
            311,
            312,
            313,
            314,
            315,
            316,
            317,
            318,
            319,
            320,
            321,
            322,
            323,
            324,
            325,
            326,
            327,
            328,
            329,
            330,
            331,
            332,
            333,
            334,
            335,
            336,
            337,
            338,
            339,
            340,
            341,
            342,
            343,
            344,
            345,
            346,
            347,
            348,
            349,
            350,
            351,
            352,
            353,
            354,
            355,
            356,
            357,
            358,
            359,
            360,
            361,
            362,
            363,
            364,
            365,
            366,
            367,
            368,
            369,
            370,
            371,
            372,
            373,
            374,
            375,
            376,
            377,
            378,
            379,
            380,
            381,
            382,
            383,
            384,
            385,
            386,
            387,
            388,
            389,
            390,
            391,
            392,
            393,
            394,
            395,
            396,
            397,
            398,
            399,
            400,
            401,
            402,
            403,
            404,
            405,
            406,
            407,
            408,
            409,
            410,
            411,
            412,
            413,
            414,
            415,
            416,
            417,
            418,
            419,
            420,
            421,
            422,
            423,
            424,
            425,
            426,
            427,
            428,
            429,
            430,
            431,
            432,
            433,
            434,
            435,
            436,
            437,
            438,
            439,
            440,
            441,
            442,
            443,
            444,
            445,
            446,
            447,
            448,
            449,
            450,
            451,
            452,
            453,
            454,
            455,
            456,
            457,
            458,
            459,
            460,
            461,
            462,
            463,
            464,
            465,
            466,
            467,
            468,
            469,
            470,
            471,
            472,
            473,
            474,
            475,
            476,
            477,
            478,
            479,
            480,
            481,
            482,
            483,
            484,
            485,
            486,
            487,
            488,
            489,
            490,
            491,
            492,
            493,
            494,
            495,
            496,
            497,
            498,
            499,
        ]
    )
    ys = np.array(
        [
            1.26230459e00,
            3.59321301e-01,
            2.11936647e00,
            1.84432132e00,
            2.27899071e00,
            1.51661172e00,
            1.95712695e-01,
            1.64582244e00,
            1.19080132e00,
            1.77906596e00,
            2.60834568e00,
            4.01352512e00,
            1.12257450e00,
            -2.38223520e-01,
            3.17199023e-01,
            2.85413316e-01,
            9.91733067e-01,
            1.84263384e00,
            2.32001561e00,
            1.33347914e00,
            3.46571661e-01,
            1.34794460e00,
            1.36144011e00,
            2.22913711e00,
            2.95592602e00,
            3.01213057e00,
            1.87905661e00,
            4.10827814e-01,
            -2.75564854e-01,
            1.03768731e00,
            -3.97770275e-01,
            3.06930582e00,
            2.78850709e00,
            1.48173807e00,
            -4.55744704e-03,
            -1.32975609e00,
            6.36077517e-02,
            1.83738438e00,
            1.68082395e00,
            1.39683868e00,
            -9.97108469e-02,
            -9.49959243e-01,
            7.88987944e-01,
            5.23096813e-01,
            1.79377985e00,
            2.56523643e00,
            1.65300403e00,
            1.40698126e00,
            7.48265081e-01,
            6.23696401e-01,
            9.13088969e-01,
            7.17841682e-01,
            1.76776214e00,
            3.85539288e00,
            1.44986447e00,
            2.91732462e-02,
            1.34081560e00,
            6.29367473e-01,
            1.89256668e00,
            -5.01236350e-01,
            2.44245545e00,
            -3.76219798e-01,
            -1.52341955e00,
            6.89569262e-02,
            3.47522530e-01,
            -1.68230067e-01,
            1.34471069e00,
            1.18431856e00,
            1.31349600e00,
            7.29997833e-01,
            2.89225012e-01,
            -2.80413712e00,
            7.50533432e-01,
            8.71114431e-01,
            7.07190831e-01,
            3.17740131e00,
            5.86036160e-01,
            5.90711279e-01,
            -7.22011344e-01,
            -1.50789690e-01,
            1.50888043e00,
            3.91049296e-01,
            2.35969482e00,
            1.08970815e00,
            1.42594895e00,
            4.96137247e-01,
            1.30358513e00,
            3.34551072e00,
            1.93665667e00,
            1.53050683e00,
            2.36212454e00,
            -5.24698604e-01,
            4.42035630e-02,
            -9.42400877e-01,
            9.51652062e-01,
            -6.94684749e-01,
            2.91913781e00,
            4.31538812e-02,
            -1.24747396e00,
            7.96053706e-02,
            1.87125758e00,
            3.24216046e00,
            1.21241355e00,
            1.18453587e00,
            -6.06840947e-01,
            -5.66081726e-01,
            1.95866564e00,
            1.73761292e-01,
            1.45443360e00,
            3.12741942e00,
            2.18546158e00,
            3.38033204e-01,
            7.39796805e-02,
            -4.12367686e-01,
            2.09752078e00,
            2.94173384e00,
            1.43576006e00,
            2.35233888e00,
            1.75026987e-01,
            -7.96761454e-01,
            1.16392155e00,
            3.95625636e-01,
            3.25318881e00,
            1.50728811e00,
            4.19976468e00,
            2.68370507e-01,
            2.61967644e00,
            -8.89491321e-02,
            2.55987916e00,
            2.56399322e00,
            9.51770979e-01,
            6.74653511e-01,
            2.33729281e-01,
            -7.14686280e-01,
            -2.67159716e-01,
            1.13894794e00,
            3.23252390e00,
            1.33774678e00,
            1.31868005e00,
            1.81951904e-01,
            4.79242635e-01,
            2.15532864e-01,
            6.92885478e-01,
            1.70927123e00,
            1.32722492e00,
            1.44586826e00,
            1.29820650e00,
            3.99065294e-01,
            -5.78380524e-01,
            9.27519202e-01,
            2.47403927e-01,
            1.55674871e00,
            -3.25379422e-01,
            1.09442721e00,
            -4.74897587e-01,
            1.93365775e00,
            1.41704079e00,
            2.91712317e00,
            2.66207768e00,
            1.84139843e-01,
            1.37767813e-01,
            1.25142357e00,
            4.84057548e-01,
            6.07245680e-01,
            3.30181350e-01,
            2.43432229e00,
            2.56402791e00,
            -6.93171018e-01,
            6.68779033e-01,
            -1.94396361e-01,
            1.51260020e00,
            2.49096620e00,
            2.45031139e00,
            3.03096170e-01,
            -8.18876084e-01,
            8.19588735e-01,
            -1.17728460e00,
            -1.16854500e00,
            2.44811633e00,
            1.93316841e00,
            1.37030049e00,
            7.81292142e-01,
            4.01495947e-01,
            1.47579864e-01,
            -2.84856788e-01,
            1.98363074e00,
            2.19940360e00,
            -8.05836667e-01,
            1.46269262e00,
            -7.71479430e-01,
            -4.29736882e-01,
            1.49405237e00,
            1.83036686e00,
            9.27646287e-01,
            1.42684947e00,
            -1.47479979e00,
            -2.83542544e00,
            -1.32329789e00,
            8.63657805e-01,
            1.67849080e00,
            2.90746670e-01,
            1.21004861e00,
            -1.20775413e00,
            -5.31279246e-01,
            1.56967687e00,
            1.83278302e00,
            9.72991848e-01,
            1.67934543e00,
            1.94689352e00,
            -1.29059489e00,
            -1.66424333e-01,
            6.79751734e-01,
            1.91516968e00,
            1.71575116e00,
            1.79466158e00,
            5.07323181e-01,
            6.24431305e-01,
            1.25871938e00,
            9.73003775e-01,
            1.83284056e00,
            7.67068188e-01,
            2.16195802e00,
            1.97370305e00,
            7.27160897e-01,
            -9.71488218e-01,
            -8.58690312e-01,
            -3.67525205e-01,
            1.29494233e00,
            7.18195673e-02,
            1.21326802e00,
            -7.58598785e-01,
            -1.06418506e-03,
            -3.60541127e-01,
            5.97630287e-01,
            1.16314252e00,
            2.79888774e00,
            3.17366401e00,
            8.46983160e-01,
            1.71412642e-02,
            -5.94253205e-01,
            1.10030645e-01,
            8.48605322e-01,
            1.60590771e00,
            1.51386287e00,
            -7.66986890e-01,
            3.71606231e-01,
            9.31114992e-01,
            1.14051595e00,
            3.12671250e00,
            8.41910255e-01,
            1.81572098e00,
            7.26485448e-01,
            9.54109141e-01,
            -7.01049465e-01,
            -7.08966723e-01,
            1.84269535e00,
            2.23904728e00,
            1.04671627e00,
            3.85234747e-02,
            -4.04382967e-01,
            7.65336840e-01,
            7.72256692e-01,
            1.39904849e00,
            1.49380494e00,
            1.02689147e00,
            7.66556348e-01,
            6.45355391e-01,
            5.92087646e-01,
            1.45512657e00,
            8.99221323e-01,
            2.24730476e00,
            1.83258046e00,
            1.76767850e00,
            -8.32995347e-02,
            1.43100675e00,
            1.42191705e-01,
            2.27576545e00,
            3.39549232e00,
            3.35252919e00,
            1.48749067e00,
            -1.17012953e00,
            -6.15039264e-01,
            9.25848706e-01,
            8.39612122e-01,
            3.49473756e00,
            3.62672699e00,
            7.11679401e-01,
            -6.21133647e-01,
            -1.71974130e-01,
            2.19582351e-01,
            1.70029203e00,
            4.97072898e-01,
            3.07661373e00,
            5.89705127e-01,
            -3.85557180e-01,
            -1.21627747e-01,
            6.88094658e-01,
            2.08683855e00,
            2.04800796e00,
            3.67022420e-01,
            3.03847578e-02,
            2.12803068e-01,
            1.27382824e00,
            2.20525878e00,
            2.09729942e00,
            2.92745219e00,
            1.43501329e00,
            -1.00158984e00,
            -4.26869441e-01,
            2.38459396e-01,
            6.18281003e-01,
            2.86900336e00,
            5.26441897e-01,
            1.83471736e00,
            5.64276032e-01,
            -4.79185498e-02,
            1.56645081e00,
            1.90975688e00,
            1.96805054e00,
            1.32437211e00,
            1.54723551e00,
            2.97027599e00,
            8.23747319e-01,
            -1.07597824e00,
            1.29796781e-01,
            3.08261173e00,
            1.94024883e00,
            1.67053036e00,
            7.68453719e-01,
            2.53848214e-01,
            -2.71074406e-01,
            1.11041190e00,
            3.06171371e00,
            2.88915244e00,
            2.00362771e00,
            1.67907635e00,
            9.25318467e-01,
            -6.21558807e-01,
            3.77295621e-01,
            2.51130485e00,
            1.23662523e00,
            1.47239092e00,
            1.17058209e00,
            1.47667951e-01,
            1.33386697e-01,
            -4.53263981e-01,
            1.12631733e00,
            3.26298892e00,
            2.35568468e00,
            3.83027496e-01,
            -3.78093690e-02,
            6.37261226e-01,
            1.72890857e00,
            2.57274809e00,
            2.60905435e00,
            1.56994909e00,
            5.17535191e-01,
            3.77275665e-01,
            -3.45929860e-01,
            2.58949535e00,
            7.62669260e-01,
            3.47958346e00,
            1.83376087e00,
            3.34759101e-01,
            -1.39156268e-01,
            1.24690335e-01,
            1.07593646e00,
            1.77047871e00,
            1.18853328e00,
            8.68015144e-01,
            8.48988929e-01,
            -8.95110881e-01,
            1.07420642e-01,
            3.06363479e00,
            7.15866469e-01,
            1.66342966e00,
            2.57150732e00,
            -1.04277245e-01,
            -2.90886083e00,
            -1.00809760e00,
            7.93375194e-01,
            2.20504948e00,
            2.85967791e00,
            2.15743733e00,
            2.08510982e00,
            3.16493745e-01,
            -1.04790522e00,
            1.30076686e-01,
            1.47648939e00,
            9.65983115e-01,
            3.03133713e00,
            -2.24802033e00,
            -1.90839207e-01,
            1.41532791e00,
            7.77675677e-01,
            2.91494777e00,
            2.70474727e00,
            2.01074236e00,
            1.30244225e00,
            -4.91068641e-01,
            4.32498323e-01,
            1.95233060e00,
            3.07520214e00,
            3.78334096e00,
            3.35590562e00,
            -8.08053405e-01,
            4.51994781e-01,
            7.74504797e-01,
            3.52334793e-01,
            2.44854135e00,
            3.34811742e00,
            1.82352584e00,
            2.26330255e00,
            2.77269351e-01,
            6.07576157e-02,
            -2.01833711e-01,
            1.04185052e00,
            2.32538242e00,
            2.84038167e00,
            2.29044210e00,
            7.03146152e-01,
            -6.01907112e-01,
            1.80397234e00,
            1.98634086e00,
            1.22690644e00,
            3.21915541e00,
            -1.17284206e00,
            -1.54417786e00,
            9.18351626e-01,
            1.76980729e00,
            1.04351305e00,
            2.36195029e00,
            1.16500774e00,
            6.12450462e-01,
            -7.08609723e-01,
            1.04230824e00,
            1.70969447e00,
            2.64288913e00,
            2.34976952e-01,
            1.18716059e00,
            -6.61424108e-02,
            -1.20049369e00,
            -1.12993788e-01,
            7.55088949e-01,
            1.83416312e00,
            2.91320098e00,
            2.24328733e00,
            2.40555340e00,
            -8.20700873e-01,
            -2.63662670e-01,
            2.94146708e00,
            1.04753337e00,
            2.53330830e00,
            2.32237327e00,
            3.59879157e00,
            -8.70552383e-02,
            -1.59399066e00,
            5.19713176e-01,
            2.12543089e00,
            6.33612253e-01,
            6.34693702e-03,
            5.60397860e-01,
            1.11221859e00,
            5.75088199e-01,
            1.47442294e00,
            1.57493470e00,
            2.26755516e00,
            1.01931474e00,
            8.58035549e-01,
            6.32568766e-02,
            -9.93171533e-02,
            9.53238163e-01,
            -7.85355122e-02,
            2.21938966e00,
            -7.07804875e-01,
            1.67680863e00,
            -6.63675108e-01,
            8.64217983e-02,
            6.97749258e-01,
            1.31259744e00,
            2.59287989e00,
            1.56744990e00,
            7.89167355e-01,
            1.81647380e00,
            7.08114108e-02,
            4.20118710e-01,
            2.17202561e00,
            2.82122287e00,
            3.27621088e00,
            6.30451516e-01,
            9.99653246e-01,
            1.30341376e00,
            5.29974172e-01,
            2.89059099e00,
            1.37370641e00,
            1.23284225e00,
            9.20544746e-02,
            -2.13971697e00,
            6.64817992e-02,
            4.62250775e-01,
        ]
    )
    

    After zooming in a few times, it looks something like this:

    ┌────────────────────────────────────────────────────────────┐
    │▐  ▐  █ ▐  ▖ ▟▟ █ ▐█    ▌    ▐▌▐▐    ▌▌▐▐ ▌ ▙▌ ▐ ▌▐ ▌▌▐▐▌▐  │ 1.7
    │▐▐ ▐  █ ▐  ▌ ██ ▌▌▐▛▖   ▌  ▌ ▐▌▐▐    ▌▌▐▐ ▌ █▌ ▐ ▌▐▌▌▌▌▐▌▐▌▐│ 
    │▐▐ ▐  █▖▐▙ █ ██ ▌▌▐▌▌   ▌  █ ▐▌▐▐ ▐ ▗▌▙▐▐ ▌ ▜▌ ▐ ▌▐▌▌▌▌▐▌▌▚▐│ 
    │▐▐ ▐▚ █▌▞█ █ ██ ▌▌▐▌▌▗  ▌  █ ▐▌▐▐ ▐▌▐▌█▟▐ ▌▖▐▌ ▐ ▙▐▌▙▌▌▞▚▌▐▐│ 
    │█▝ ▐▐ █▌▌█ █▌██ ▌▌█▌▌▐▌▐▌  █ ▟▌▐▐ ▌▌▐▌██▐ ▌▌▐▌ ▐ █▐▌█▌▌ ▐▌█▐│ 1.2
    │█  ▐▐ █▌▌█ █▌▛█▐ █▌▌▌▐▙ ▌ ▐▐▐▐▌▐▐ ▌▌▐▌█▛▐ █▌▐▌ ▝▌█▐▌██▌▌▐▌█▐│ 
    │█  ▐▐ ██▌▜ █▌▌▜▐ █▘▌▌▐█ ▌ ▐▐▐▐█▐▐▖▌▚▐▌█▌▐▐█▌▐▌  ▌█▐▌██▌▌▐▌█▐│ 
    │█ ▐▐▐ ██▌▐ █▌▌▐▐▗█ ▌▌▐█ ▌▌▟▐▐▝▐▐▐▙▌▐▞ █▌▐▐▜▌▐▙  ▌█▐▌█▜▌▌▐▌█▐│ 
    │█ ▐▐▝▖██▌▐ █▌▌▐▐▝█ ▌▌▐█▐ ▚▜▐▞ ▐▐▐█ ▝▌ █▌▐▐▐▌▐█ ▌▌█▐▘█▐▌▌▐▌█▐│ 0.6
    │█ ▐▐ ▌██▌▐ █▌▌▐▐ ▌ ▌▌▐█▐ ▐▐▐▌ ▝▟▐█    ▜▌▐▐▐▌▐█▐▌▙▜▐ █▐▌▌▐▌▀▟│ 
    │█ ▐▐ ▌██▌▐ █▌▌▐▐   ▌▌▐█▐ ▐▐▐▌  █▝█    ▐▌▐▐▐▌▐ █▌█▐▐▐ ▐▌▌▐▌ █│ 
    │█▐▐▐ ▚██▌▐▐▛▌▌▐▐   ▌▌▞█▐▐▐▐▐▌  █ █    ▐▌▐▐▐▐▌ █▘█▝▐▐ ▐▌▌▐▌ █│ 
    │█▝▟▐ ▐██▌▐▐▌▌▌▐▐   ▌▙▌█▐▐▐▞▐▌  █ █▗   ▐▘▖█▐▐▌▐█ █ ▐▐ ▐▌▌▐▌ █│ 0.1
    │▌▔█▐▔▐▜█▌▐▐▔▌▙▐▐▔▔▔▔█▌▐█▐▐▌▐▌▔▔█▔█▐▔▔▔▐▔▌█▐▐▌▐█▔▌▔▐▐▔▝▌▌▐▌▔█│ 
    │▌ █▌ ▐▐█▌▐▐ █▐ ▌    █▌▐█▐▐▌▐▌  █ █▐     ▌█▐▐▌ █ ▌ ▐▐   ▌▐▌ █│ 
    │▌ █▌ ▝▝█▌▐▐ █▐ ▌    █▌▐█▐▐▌▐▌  █ ▛▐     ▌█▐▐▘ ▌ ▘ ▐▞   ▌▐▌ ▝│ 
    │▌ █▌   █▌▐▐ █▐ ▌    ▐▌▐▘▐ ▌▐▌  █ ▌▐      █▐▐  ▘   ▝▌   ▘▐▌  │ -0.5
    └────────────────────────────────────────────────────────────┘
     168                                                      332
    Move h/j/k/l, zoom u/n, or r to reset. ESC/q to quit
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/Users/olav/Desktop/Development/uniplot/uniplot/uniplot.py", line 48, in plot
        xs=series.xs, ys=series.ys, options=options
      File "/Users/olav/Desktop/Development/uniplot/uniplot/layer_assembly.py", line 24, in assemble_scatter_plot
        pixel_layer = layer_factory.render_points(xs=xs, ys=ys, options=options)
      File "/Users/olav/Desktop/Development/uniplot/uniplot/layer_factory.py", line 75, in render_points
        lines=options.lines,
      File "/Users/olav/Desktop/Development/uniplot/uniplot/pixel_matrix.py", line 125, in render
        # DEBUG
    IndexError: index -167 is out of bounds for axis 1 with size 120
    
    bug 
    opened by olavolav 1
  • Incorrect centering of labels with units

    Incorrect centering of labels with units

    See this example:

    >>> plot([1,3,2], height=2)
    ┌────────────────────────────────────────────────────────────┐
    │                              ▘                            ▗│ 3
    │▖                                                           │ 1
    └────────────────────────────────────────────────────────────┘
     1                             2                            3
    >>> plot([1,3,2], height=2, x_unit=" microns")
    ┌────────────────────────────────────────────────────────────┐
    │                              ▘                            ▗│ 3
    │▖                                                           │ 1
    └────────────────────────────────────────────────────────────┘
     1 microns                     2 microns                    3 microns
    

    What should happen is that the labels are centered, including the units.

    bug 
    opened by olavolav 0
  • Extra lines are drawn that shouldn't be there

    Extra lines are drawn that shouldn't be there

    To Reproduce:

    >>> plot(xs=[1,1], ys=[0,1], lines=True, x_min=3, x_max=6)
    ┌────────────────────────────────────────────────────────────┐
    │                    ▖                                       │ 1.0
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 0.7
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 0.5
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 0.3
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │                    ▌                                       │ 
    │▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0.0
    └────────────────────────────────────────────────────────────┘
     3                                                          6
    

    Obviously there should not be anything drawn in this view.

    Here, the correct line is drawn, but also weird other ones. In interactive mode this line appears once the real one is out of view.

    bug 
    opened by olavolav 0
  • Requesting Support for Using Non-Number Datatype Values for X-Axis

    Requesting Support for Using Non-Number Datatype Values for X-Axis

    Hi again @olavolav. If I am not wrong, currently there is support for only using Number Datatypes on both the x and y axes. However, while performing time series analysis and plotting trends for the time, we often need to mention the time(month/ date etc.) as a string. I am looking for something similar to this but on the terminal. image

    I dont think that you need to perform any sorting for the date and such internally and we can probably mandate that the user itself sorts the list prior to plotting. Can this be supported?

    feature request 
    opened by ghost 2
Releases(v0.8.1)
  • v0.8.1(Dec 19, 2022)

  • v0.8.0(Nov 2, 2022)

    Changed

    • Switched to Poetry for package and build management.
    • Now using numpy.typing for type hints of NumPy objects, which means that uniplot now support numpy versions >=1.20.0.
    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Dec 2, 2021)

Owner
Olav Stetter
Head of Data Science @ KONUX
Olav Stetter
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023