Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Related tags

Deep LearningRealVSR
Overview

Dataset and Code for RealVSR

Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme
Xi Yang, Wangmeng Xiang, Hui Zeng and Lei Zhang
International Conference on Computer Vision, 2021.

Dataset

The dataset is hosted on Google Drive and Baidu Drive (code: 43ph). Some example scenes are shown below.

dataset_samples

The structure of the dataset is illustrated below.

File Description
GT.zip All ground truth sequences in RGB format
LQ.zip All low quality sequences in RGB format
GT_YCbCr.zip All ground truth sequences in YCbCr format
LQ_YCbCr.zip All low quality sequences in YCbCr format
GT_test.zip Ground truth test sequences in RGB format
LQ_test.zip Low Quality test sequences in RGB format
GT_YCbCr_test.zip Ground truth test sequences in YCbCr format
LQ_YCbCr_test.zip Low Quality test sequences in YCbCr format

Code

Dependencies

  • Linux (tested on Ubuntu 18.04)
  • Python 3 (tested on python 3.7)
  • NVIDIA GPU + CUDA (tested on CUDA 10.2 and 11.1)

Installation

# Create a new anaconda python environment (realvsr)
conda create -n realvsr python=3.7 -y

# Activate the created environment
conda activate realvsr

# Install dependencies
pip install -r requirements.txt

# Bulid the DCN module
cd codes/models/archs/dcn
python setup.py develop

Training

Modify the configuration files accordingly in codes/options/train folder and run the following command (current we did not implement distributed training):

python train.py -opt xxxxx.yml

Testing

Test on RealVSR testing set sequences:

Modify the configuration in test_RealVSR_wi_GT.py and run the following command:

python test_RealVSR_wi_GT.py

Test on real-world captured sequences:

Modify the configuration in test_RealVSR_wo_GT.py and run the following command:

python test_RealVSR_wo_GT.py

Pre-trained Models

Some pretrained models could be found on Google Drive and Baidu Drive (code: n1n0).

License

This project is released under the Apache 2.0 license.

Citation

If you find this code useful in your research, please consider citing:

@article{yang2021real,
  title={Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme},
  author={YANG, Xi and Xiang, Wangmeng and Zeng, Hui and Zhang, Lei},
  journal=ICCV,
  year={2021}
}

Acknowledgement

This implementation largely depends on EDVR. Thanks for the excellent codebase! You may also consider migrating it to BasicSR.

Owner
Xi Yang
PhD Candidate @ PolyU, working on low-level computer vision
Xi Yang
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022