a pytorch implementation of auto-punctuation learned character by character

Overview

Learning Auto-Punctuation by Reading Engadget Articles

DOI

Link to Other of my work

🌟 Deep Learning Notes: A collection of my notes going from basic multi-layer perceptron to convNet and LSTMs, Tensorflow to pyTorch.

💥 Deep Learning Papers TLDR; A growing collection of my notes on deep learning papers! So far covers the top papers from this years ICLR.

Overview

This project trains a bi-directional GRU to learn how to automatically punctuate a sentence by reading blog posts from Engadget.com character by character. The set of operation it learns include:

capitalization: <cap>
         comma:  ,
        period:  .
   dollar sign:  $
     semicolon:  ;
         colon:  :
  single quote:  '
  double quote:  "
  no operation: <nop>

Performance

After 24 epochs of training, the network achieves the following performance on the test-set:

    Test P/R After 24 Epochs 
    =================================
    Key: <nop>	Prec:  97.1%	Recall:  97.8%	F-Score:  97.4%
    Key: <cap>	Prec:  68.6%	Recall:  57.8%	F-Score:  62.7%
    Key:   ,	Prec:  30.8%	Recall:  30.9%	F-Score:  30.9%
    Key:   .	Prec:  43.7%	Recall:  38.3%	F-Score:  40.8%
    Key:   '	Prec:  76.9%	Recall:  80.2%	F-Score:  78.5%
    Key:   :	Prec:  10.3%	Recall:   6.1%	F-Score:   7.7%
    Key:   "	Prec:  26.9%	Recall:  45.1%	F-Score:  33.7%
    Key:   $	Prec:  64.3%	Recall:  61.6%	F-Score:  62.9%
    Key:   ;	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   ?	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   !	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A

As a frist attempt, the performance is pretty good! Especially since I did not fine tune with a smaller step size afterward, and the Engadget dataset used here is small in size (4MB total).

Double the training gives a small improvement.

Table 2. After 48 epochs of training

    Test P/R  Epoch 48 Batch 380
    =================================
    Key: <nop>	Prec:  97.1%	Recall:  98.0%	F-Score:  97.6%
    Key: <cap>	Prec:  73.2%	Recall:  58.9%	F-Score:  65.3%
    Key:   ,	Prec:  35.7%	Recall:  32.2%	F-Score:  33.9%
    Key:   .	Prec:  45.0%	Recall:  39.7%	F-Score:  42.2%
    Key:   '	Prec:  81.7%	Recall:  83.4%	F-Score:  82.5%
    Key:   :	Prec:  12.1%	Recall:  10.8%	F-Score:  11.4%
    Key:   "	Prec:  25.2%	Recall:  44.8%	F-Score:  32.3%
    Key:   $	Prec:  51.4%	Recall:  87.8%	F-Score:  64.9%
    Key:   ;	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   ?	Prec:   5.6%	Recall:   4.8%	F-Score:   5.1%
    Key:   !	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A

Usage

If you feel like using some of the code, you can cite this project via

@article{deeppunc,
  title={Deep-Auto-Punctuation},
  author={Yang, Ge},
  journal={arxiv},
  year={2017},
  doi={10.5281/zenodo.438358}
  url={https://zenodo.org/record/438358;
       https://github.com/episodeyang/deep-auto-punctuation}
}

To run

First unzip the engagdget data into folder ./engadget_data by running

tar -xvzf engadget_data.tar.gz

and then open up the notebook Learning Punctuations by reading Engadget.pynb, and you can just execute.

To view the reporting, open a visdom server by running

python visdom.server

and then go to http://localhost:8097

Requirements

pytorch numpy matplotlib tqdm bs4

Model Setup and Considerations

The initial setup I began with was a single uni-direction GRU, with input domain [A-z0-9] and output domain of the ops listed above. My hope at that time was to simply train the RNN to learn correcponding operations. A few things jumped out during the experiment:

  1. Use bi-directional GRU. with the uni-direction GRU, the network quickly learned capitalization of terms, but it had difficulties with single quote. In words like "I'm", "won't", there are simply too much ambiguity from reading only the forward part of the word. The network didn't have enough information to properly infer such punctuations.

    So I decided to change the uni-direction GRU to bi-direction GRU. The result is much better prediction for single quotes in concatenations.

    the network is still training, but the precision and recall of single quote is nowt close to 80%.

    This use of bi-directional GRU is standard in NLP processes. But it is nice to experience first-hand the difference in performance and training.

    A side effect of this switch is that the network now runs almost 2x slower. This leads to the next item in this list:

  2. Use the smallest model possible. At the very begining, my input embeding was borrowed from the Shakespeare model, so the input space include both capital alphabet as well as lower-case ones. What I didn't realize was that I didn't need the capital cases because all inputs were lower-case.

    So when the training became painfully slow after I switch to bi-directional GRU, I looked for ways to make the training faster. A look at the input embeding made it obvious that half of the embedding space wasn't needed.

    Removing the lower case bases made the traing around 3x faster. This is a rough estimate since I also decided to redownload the data set at the same time on the same machine.

  3. Text formatting. Proper formating of input text crawed from Engadget.com was crucial, especially because the occurrence of a lot of the puncuation was low and this is a character-level model. You can take a look at the crawed text inside ./engadget_data_tar.gz.

  4. Async and Multi-process crawing is much much faster. I initially wrote the engadget crawer as a single threaded class. Because the python requests library is synchronous, the crawler spent virtually all time waiting for the GET requests.

    This could be made a lot faster by parallelizing the crawling, or use proper async pattern.

    This thought came to me pretty late during the second crawl so I did not implement it. But for future work, parallel and async crawler is going to be on the todo list.

  5. Using Precision/Recall in a multi-class scenario. The setup makes the reasonable assumption that each operation can only be applied mutually exclusively. The accuracy metric used here are precision/recall and the F-score, both commonly used in the literature1, 2. The P/R and F-score are implemented according to wikipedia 3, 4.

    example accuracy report:

    Epoch 0 Batch 400 Test P/R
    =================================
    Key: <nop>	Prec:  99.1%	Recall:  96.6%	F-Score:  97.9%
    Key:   ,	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key: <cap>	Prec: 100.0%	Recall:  75.0%	F-Score:  85.7%
    Key:   .	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   '	Prec:  66.7%	Recall: 100.0%	F-Score:  80.0%
    
    
    true_p:	{'<nop>': 114, '<cap>': 3, "'": 2}
    p:	{'<nop>': 118, '<cap>': 4, "'": 2}
    all_p:	{'<nop>': 115, ',': 2, '<cap>': 3, '.': 1, "'": 3}
    
    400it [06:07,  1.33s/it]
    
  6. Hidden Layer initialization: In the past I've found it was easier for the neural network to generate good results when both the training and the generation starts with a zero initial state. In this case because we are computing time limited, I zero the hidden layer at the begining of each file.

  7. Mini-batches and Padding: During training, I first sort the entire training set by the length of each file (there are 45k of them) and arrange them in batches, so that files inside each batch are roughly similar size, and only minimal padding is needed. Sometimes the file becomes too long. In that case I use data.fuzzy_chunk_length() to calculate a good chunk length with heuristics. The result is mostly no padding during most of the trainings.

    Going from having no mini-batch to having a minibatch of 128, the time per batch hasn't changed much. The accuracy report above shows the training result after 24 epochs.

Data and Cross-Validation

The entire dataset is composed of around 50k blog posts from engadget. I randomly selected 49k of these as my training set, 50 as my validation set, and around 0.5k as my test set. The training is a bit slow on an Intel i7 desktop, averaging 1.5s/file depending on the length of the file. As a result, it takes about a day to go through the entire training set.

Todo:

All done.

Done:

  • execute demo test after training
  • add final performance metric
  • implement minibatch
  • a generative demo
  • add validation (once an hour or so)
  • add accuracy metric, use precision/recall.
  • change to bi-directional GRU
  • get data
  • Add temperature to generator
  • add self-feeding generator
  • get training to work
  • use optim and Adam

References

1: https://www.aclweb.org/anthology/D/D16/D16-1111.pdf
2: https://phon.ioc.ee/dokuwiki/lib/exe/fetch.php?media=people:tanel:interspeech2015-paper-punct.pdf
3: https://en.wikipedia.org/wiki/precision_and_recall
4: https://en.wikipedia.org/wiki/F1_score

Comments
  • Can't run example training

    Can't run example training

    Hi there,

    As a first contact with your project I am trying to run it 'as is', but it seems I can't run a proper training with the example notebook.

    All preliminary steps work fine, but when launching the training step, the only output I get is 0it [00:00, ?it/s], repeatedly, and nothing further is happening either on logs or in the directories (nothing is saved).

    By the way, I believe some indentation is missed for the last 2 lines of the block (need to be inside the for loop for batch_ind to be defined).

    I managed to test the pretrained models though.

    Thanks for your implementation anyways, and thanks in advance for your reply! Hope to get the code running properly soon :)

    F

    opened by francoishernandez 5
  • view size not compatible with input tensor size and stride

    view size not compatible with input tensor size and stride

    Traceback (most recent call last): File "train.py", line 71, in <module> egdt.forward(input_, target_) File "/home/flow/deep-auto-punctuation/model.py", line 90, in forward self.next_(input_batch) File "/home/flow/deep-auto-punctuation/model.py", line 111, in next_ self.output, self.hidden = self.model(self.embed(input_text), self.hidden) File "/home/flow/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/flow/deep-auto-punctuation/model.py", line 32, in forward output = self.decoder(gru_output.view(-1, self.hidden_size * self.bi_mul)) RuntimeError: invalid argument 2: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Call .contiguous() before .view(). at /opt/conda/conda-bld/pytorch_1533672544752/work/aten/src/TH/generic/THTensor.cpp:237

    Any idea what could be causing this?

    opened by sebastianvermaas 3
  • input string has differnt length from punctuation list

    input string has differnt length from punctuation list

    Hi, i've tried your code and got assertion error in data module due to length of input string and punctuation was not the same. I loaded your latest model without trained it again. do you have any advice ?

    gits

    opened by laluarif93 0
  •  Adding a license

    Adding a license

    Hello,

    Would you be willing to add a license to this repository? See: https://opensource.stackexchange.com/questions/1720/what-can-i-assume-if-a-publicly-published-project-has-no-license

    Thank you.

    opened by Tejash241 0
  • Issue with visdom.server

    Issue with visdom.server

    Hi there

    Brilliant work I looked up everywhere for a soluton for that but didn't solve the issue

    I keep getting the error message "C:\Users\David\Anaconda3\lib\site-packages\visdom\server.py:39: DeprecationWarning: zmq.eventloop.ioloop is deprecated in pyzmq 17. pyzmq now works with default tornado and asyncio eventloops."

    I try all the combinations of pip install visdom and conda install visdom etc I didn't succeed in compiling your work using the command make run

    Should I use a specific version of visdom or python to use your work?

    Thanks so much for your help Dave

    opened by Best-Trading-Indicator 3
  • Training size too big..Any suggestions?

    Training size too big..Any suggestions?

    Hi! I really am interested in testing and running through your code. Everything is working except for one thing.. When just before training, it says Too many values to unpack. Any suggestions on how to fix this issue? or any smaller size training sets you might know of?

    screen shot 2018-03-02 at 6 59 50 pm

    PS: it says python 2 but my kernel is python 3.

    opened by jlvasquezcollado 2
Releases(v1.0.0)
Owner
Ge Yang
Ge Yang
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022