Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

Overview

EPSR (Enhanced Perceptual Super-resolution Network) paper

This repo provides the test code, pretrained models, and results on benchmark datasets of our work. We (IPCV_team) won the first place in PIRM2018-SR competition (region 1). We were also ranked as second and thrid in region 2 and 3 respectively. For details refer to our recently accepted paper in ECCV2018 PIRM Workshop.

"Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network", Subeesh Vasu, Nimisha T. M. and A. N. Rajagopalan, Perceptual Image Restoration and Manipulation (PIRM) Workshop and Challenge, Eurpean Conference on Computer Vision Workshops (ECCVW 2018), Munich, Germany, September 2018. [arXiv]

BibTeX

 @inproceedings{vasu2018analyzing,
    author = {Vasu, Subeesh and T.M., Nimisha and Rajagopalan, A.N.},
    title = {Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network},
    booktitle = {European Conference on Computer Vision (ECCV) Workshops},
    year = {2018}}

Results

Visual comparison for 4× SR with bicubic interpolation model on PIRM-self, BSD100, and Urban100 datasets. Here IHR refers to the ground truth HR image. SRCNN, EDSR, DBPN, ENet, and CX are existing works. EPSR1, EPSR2, and EPSR3 are the results of our approach (EPSR) corresponding to region 1, 2, and 3 of PIRM-SR challenge. BNet1, BNet2, and BNet3 are the results of our baseline network.

drawing

Perception-distortion trade-off between BNet and EPSR. For both methods, the above plot has the values corresponding to 19 model weights which span different regions on the perception-distortion plane and the corresponding curves that best fit these values.

drawing

Performance comparison of top 9 methods from PIRM-SR challenge. Methods are ranked based on the PI and RMSE values corresponding to the test data of PIRM-SR. The entries from our approach are highlighted in red. Methods with a marginal difference in PI and RMSE values share the same rank and are indicated with a " * ".

Test

The code is built on the official implementation of EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0) with Titan X GPU. Refer EDSR (PyTorch) for other dependencies. Test code of EPSR can be found in EPSR_testcode.

Results on public benchmark datasets

References

[SRCNN] Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. ECCV 2014

[EDSR] Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CVPR workshops 2017

[DBPN] Haris, M., Shakhnarovich, G., Ukita, N.: Deep backprojection networks for super-resolution. CVPR 2018

[ENet] Sajjadi, M.S., Sch ̈olkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution through automated texture synthesis. ICCV 2017

[CX] Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L. Learning to maintain natural image statistics. arXiv preprint arXiv:1803.04626 (2018)

[PIRM-SR challenge] Blau, Y., Mechrez, R., Timofte, R. 2018 PIRM Challenge on Perceptual Image Super-resolution. arXiv preprint arXiv:1809.07517 (2018)

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their codes of EDSR PyTorch version.

Owner
Subeesh Vasu
Post-doctoral Researcher, Computer Vision Lab
Subeesh Vasu
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022