Source code for our paper "Empathetic Response Generation with State Management"

Overview

Source code for our paper "Empathetic Response Generation with State Management"

this repository is maintained by both Jun Gao and Yuhan Liu

Model Overview

model

Environment Requirement

  • pytorch >= 1.4
  • sklearn
  • nltk
  • numpy
  • bert-score

Dataset

you can directly use the processed dataset located in data/empathetic:

├── data
│   ├── empathetic
│   │   ├── parsed_emotion_Ekman_intent_test.json
│   │   ├── parsed_emotion_Ekman_intent_train.json
│   │   ├── parsed_emotion_Ekman_intent_valid.json
│   │   ├── emotion_intent_trans.mat
│   │   ├── goEmotion_emotion_trans.mat

Or you want to reproduce the data annotated with goEmotion emotion classifier and empathetic intent classifier, you can run the command:

  • convert raw csv empathetic dialogue data into json format. (origin dataset link: EmpatheticDialogues)

    bash preprocess_raw.sh
  • train emotion classfier with goEmotion dataset and annotate (origin dataset link: goEmotion). Here $BERT_DIR is your pretrained BERT model directory which includes vocab.txt, config.json and pytorch_model.bin, here we simply use bert-base-en from Hugginface

    bash ./bash/emotion_annotate.sh  $BERT_DIR 32 0.00005 16 3 1024 2 0.1
  • train intent classfier with empathetic intent dataset and annotate (origin dataset link: Empathetic_Intent)

    bash ./bash/intent_annotate.sh  $BERT_DIR 32 0.00005 16 3 1024 2 0.1
  • build prior emotion-emotion and emotion-intent transition matrix

    bash ./bash/build_transition_mat.sh

Train

For training the LM-based model, you need to download bert-base-en and gpt2-small from Hugginface first, then run the following command. Here $GPT_DIR and $BERT_DIR are the downloaded model directory:

bash ./bash/train_LM.sh --gpt_path $GPT_DIR --bert_path $BERT_DIR --gpu_id 2 --epoch 5 --lr_NLU 0.00003 --lr_NLG 0.00008 --bsz_NLU 16 --bsz_NLG 16

for example:

bash ./bash/train_LM.sh --gpt_path /home/liuyuhan/datasets/gpt2-small --bert_path /home/liuyuhan/datasets/bert-base-en bert-base-en --gpu_id 2 --epoch 5 --lr_NLU 0.00003 --lr_NLG 0.00008 --bsz_NLU 16 --bsz_NLG 16

For training the Trs-based model, we use glove.6B.300d as the pretrained word embeddings. You can run the following command to train model. Here $GLOVE is the glove embedding txt file.

bash ./bash/train_Trs.sh --gpu_id 2 --epoch 15 --lr_NLU 0.00007 --lr_NLG 0.0015 --bsz_NLU 16 --bsz_NLG 16 --glove $GLOVE

for example:

bash ./bash/train_Trs.sh --gpu_id 2 --epoch 15 --lr_NLU 0.00007 --lr_NLG 0.0015 --bsz_NLU 16 --bsz_NLG 16 --glove /home/liuyuhan/datasets/glove/glove.6B.300d.txt

Evaluate

To generate the automatic metric results, firstly you need to make sure that bert-score is successfully installed. In our paper, we use roberta-large-en rescaled with baseline to calculate BERTScore. You can download roberta-large-en from Hugginface. For the rescaled_baseline file, we can download it from here and put it under the roberta-large-en model directory.

Then you can run the following command to get the result, here $hypothesis and $reference are the generated response file and ground-truth response file. $result is the output result file. $ROBERTA_DIR is the downloaded roberta-large-en model directory.

To evaluate LM-based model, the command is:

bash ./bash/eval.sh --hyp $hypothesis --ref ./data/empathetic/ref.txt --out $result --bert $ROBERTA_DIR --gpu_id 0 --mode LM

To evaluate Trs-based model, the command is:

bash ./bash/eval.sh --hyp $hypothesis --ref ./data/empathetic/ref_tokenize.txt --out $result --bert $ROBERTA_DIR --gpu_id 0 --mode Trs
Owner
Yuhan Liu
NLPer
Yuhan Liu
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021