Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Overview

Intro

Build Status codecov

Real-time object detection and classification. Paper: version 1, version 2.

Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

See demo below or see on this imgur

Dependencies

Python3, tensorflow 1.0, numpy, opencv 3.

Citation

@article{trieu2018darkflow,
  title={Darkflow},
  author={Trieu, Trinh Hoang},
  journal={GitHub Repository. Available online: https://github. com/thtrieu/darkflow (accessed on 14 February 2019)},
  year={2018}
}

Getting started

You can choose one of the following three ways to get started with darkflow.

  1. Just build the Cython extensions in place. NOTE: If installing this way you will have to use ./flow in the cloned darkflow directory instead of flow as darkflow is not installed globally.

    python3 setup.py build_ext --inplace
    
  2. Let pip install darkflow globally in dev mode (still globally accessible, but changes to the code immediately take effect)

    pip install -e .
    
  3. Install with pip globally

    pip install .
    

Update

Android demo on Tensorflow's here

I am looking for help:

  • help wanted labels in issue track

Parsing the annotations

Skip this if you are not training or fine-tuning anything (you simply want to forward flow a trained net)

For example, if you want to work with only 3 classes tvmonitor, person, pottedplant; edit labels.txt as follows

tvmonitor
person
pottedplant

And that's it. darkflow will take care of the rest. You can also set darkflow to load from a custom labels file with the --labels flag (i.e. --labels myOtherLabelsFile.txt). This can be helpful when working with multiple models with different sets of output labels. When this flag is not set, darkflow will load from labels.txt by default (unless you are using one of the recognized .cfg files designed for the COCO or VOC dataset - then the labels file will be ignored and the COCO or VOC labels will be loaded).

Design the net

Skip this if you are working with one of the original configurations since they are already there. Otherwise, see the following example:

...

[convolutional]
batch_normalize = 1
size = 3
stride = 1
pad = 1
activation = leaky

[maxpool]

[connected]
output = 4096
activation = linear

...

Flowing the graph using flow

# Have a look at its options
flow --h

First, let's take a closer look at one of a very useful option --load

# 1. Load tiny-yolo.weights
flow --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights

# 2. To completely initialize a model, leave the --load option
flow --model cfg/yolo-new.cfg

# 3. It is useful to reuse the first identical layers of tiny for `yolo-new`
flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights
# this will print out which layers are reused, which are initialized

All input images from default folder sample_img/ are flowed through the net and predictions are put in sample_img/out/. We can always specify more parameters for such forward passes, such as detection threshold, batch size, images folder, etc.

# Forward all images in sample_img/ using tiny yolo and 100% GPU usage
flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --gpu 1.0

json output can be generated with descriptions of the pixel location of each bounding box and the pixel location. Each prediction is stored in the sample_img/out folder by default. An example json array is shown below.

# Forward all images in sample_img/ using tiny yolo and JSON output.
flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --json

JSON output:

[{"label":"person", "confidence": 0.56, "topleft": {"x": 184, "y": 101}, "bottomright": {"x": 274, "y": 382}},
{"label": "dog", "confidence": 0.32, "topleft": {"x": 71, "y": 263}, "bottomright": {"x": 193, "y": 353}},
{"label": "horse", "confidence": 0.76, "topleft": {"x": 412, "y": 109}, "bottomright": {"x": 592,"y": 337}}]
  • label: self explanatory
  • confidence: somewhere between 0 and 1 (how confident yolo is about that detection)
  • topleft: pixel coordinate of top left corner of box.
  • bottomright: pixel coordinate of bottom right corner of box.

Training new model

Training is simple as you only have to add option --train. Training set and annotation will be parsed if this is the first time a new configuration is trained. To point to training set and annotations, use option --dataset and --annotation. A few examples:

# Initialize yolo-new from yolo-tiny, then train the net on 100% GPU:
flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights --train --gpu 1.0

# Completely initialize yolo-new and train it with ADAM optimizer
flow --model cfg/yolo-new.cfg --train --trainer adam

During training, the script will occasionally save intermediate results into Tensorflow checkpoints, stored in ckpt/. To resume to any checkpoint before performing training/testing, use --load [checkpoint_num] option, if checkpoint_num < 0, darkflow will load the most recent save by parsing ckpt/checkpoint.

# Resume the most recent checkpoint for training
flow --train --model cfg/yolo-new.cfg --load -1

# Test with checkpoint at step 1500
flow --model cfg/yolo-new.cfg --load 1500

# Fine tuning yolo-tiny from the original one
flow --train --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights

Example of training on Pascal VOC 2007:

# Download the Pascal VOC dataset:
curl -O https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

# An example of the Pascal VOC annotation format:
vim VOCdevkit/VOC2007/Annotations/000001.xml

# Train the net on the Pascal dataset:
flow --model cfg/yolo-new.cfg --train --dataset "~/VOCdevkit/VOC2007/JPEGImages" --annotation "~/VOCdevkit/VOC2007/Annotations"

Training on your own dataset

The steps below assume we want to use tiny YOLO and our dataset has 3 classes

  1. Create a copy of the configuration file tiny-yolo-voc.cfg and rename it according to your preference tiny-yolo-voc-3c.cfg (It is crucial that you leave the original tiny-yolo-voc.cfg file unchanged, see below for explanation).

  2. In tiny-yolo-voc-3c.cfg, change classes in the [region] layer (the last layer) to the number of classes you are going to train for. In our case, classes are set to 3.

    ...
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    bias_match=1
    classes=3
    coords=4
    num=5
    softmax=1
    
    ...
  3. In tiny-yolo-voc-3c.cfg, change filters in the [convolutional] layer (the second to last layer) to num * (classes + 5). In our case, num is 5 and classes are 3 so 5 * (3 + 5) = 40 therefore filters are set to 40.

    ...
    
    [convolutional]
    size=1
    stride=1
    pad=1
    filters=40
    activation=linear
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    
    ...
  4. Change labels.txt to include the label(s) you want to train on (number of labels should be the same as the number of classes you set in tiny-yolo-voc-3c.cfg file). In our case, labels.txt will contain 3 labels.

    label1
    label2
    label3
    
  5. Reference the tiny-yolo-voc-3c.cfg model when you train.

    flow --model cfg/tiny-yolo-voc-3c.cfg --load bin/tiny-yolo-voc.weights --train --annotation train/Annotations --dataset train/Images

  • Why should I leave the original tiny-yolo-voc.cfg file unchanged?

    When darkflow sees you are loading tiny-yolo-voc.weights it will look for tiny-yolo-voc.cfg in your cfg/ folder and compare that configuration file to the new one you have set with --model cfg/tiny-yolo-voc-3c.cfg. In this case, every layer will have the same exact number of weights except for the last two, so it will load the weights into all layers up to the last two because they now contain different number of weights.

Camera/video file demo

For a demo that entirely runs on the CPU:

flow --model cfg/yolo-new.cfg --load bin/yolo-new.weights --demo videofile.avi

For a demo that runs 100% on the GPU:

flow --model cfg/yolo-new.cfg --load bin/yolo-new.weights --demo videofile.avi --gpu 1.0

To use your webcam/camera, simply replace videofile.avi with keyword camera.

To save a video with predicted bounding box, add --saveVideo option.

Using darkflow from another python application

Please note that return_predict(img) must take an numpy.ndarray. Your image must be loaded beforehand and passed to return_predict(img). Passing the file path won't work.

Result from return_predict(img) will be a list of dictionaries representing each detected object's values in the same format as the JSON output listed above.

from darkflow.net.build import TFNet
import cv2

options = {"model": "cfg/yolo.cfg", "load": "bin/yolo.weights", "threshold": 0.1}

tfnet = TFNet(options)

imgcv = cv2.imread("./sample_img/sample_dog.jpg")
result = tfnet.return_predict(imgcv)
print(result)

Save the built graph to a protobuf file (.pb)

## Saving the lastest checkpoint to protobuf file
flow --model cfg/yolo-new.cfg --load -1 --savepb

## Saving graph and weights to protobuf file
flow --model cfg/yolo.cfg --load bin/yolo.weights --savepb

When saving the .pb file, a .meta file will also be generated alongside it. This .meta file is a JSON dump of everything in the meta dictionary that contains information nessecary for post-processing such as anchors and labels. This way, everything you need to make predictions from the graph and do post processing is contained in those two files - no need to have the .cfg or any labels file tagging along.

The created .pb file can be used to migrate the graph to mobile devices (JAVA / C++ / Objective-C++). The name of input tensor and output tensor are respectively 'input' and 'output'. For further usage of this protobuf file, please refer to the official documentation of Tensorflow on C++ API here. To run it on, say, iOS application, simply add the file to Bundle Resources and update the path to this file inside source code.

Also, darkflow supports loading from a .pb and .meta file for generating predictions (instead of loading from a .cfg and checkpoint or .weights).

## Forward images in sample_img for predictions based on protobuf file
flow --pbLoad built_graph/yolo.pb --metaLoad built_graph/yolo.meta --imgdir sample_img/

If you'd like to load a .pb and .meta file when using return_predict() you can set the "pbLoad" and "metaLoad" options in place of the "model" and "load" options you would normally set.

That's all.

Owner
Trieu
Google Brain Resident 2017-2019. Doing research - engineering projects in Machine Learning - Deep Learning.
Trieu
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022