CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

Overview

Python >=3.5 PyTorch >=1.0

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf]

The official repository for TransReID: Transformer-based Object Re-Identification achieves state-of-the-art performances on object re-ID, including person re-ID and vehicle re-ID.

News

  • 2021.12 We improve TransReID via self-supervised pre-training. Please refer to TransReID-SSL
  • 2021.3 We release the code of TransReID.

Pipeline

framework

Abaltion Study of Transformer-based Strong Baseline

framework

Requirements

Installation

pip install -r requirements.txt
(we use /torch 1.6.0 /torchvision 0.7.0 /timm 0.3.2 /cuda 10.1 / 16G or 32G V100 for training and evaluation.
Note that we use torch.cuda.amp to accelerate speed of training which requires pytorch >=1.6)

Prepare Datasets

mkdir data

Download the person datasets Market-1501, MSMT17, DukeMTMC-reID,Occluded-Duke, and the vehicle datasets VehicleID, VeRi-776, Then unzip them and rename them under the directory like

data
├── market1501
│   └── images ..
├── MSMT17
│   └── images ..
├── dukemtmcreid
│   └── images ..
├── Occluded_Duke
│   └── images ..
├── VehicleID_V1.0
│   └── images ..
└── VeRi
    └── images ..

Prepare DeiT or ViT Pre-trained Models

You need to download the ImageNet pretrained transformer model : ViT-Base, ViT-Small, DeiT-Small, DeiT-Base

Training

We utilize 1 GPU for training.

python train.py --config_file configs/transformer_base.yml MODEL.DEVICE_ID "('your device id')" MODEL.STRIDE_SIZE ${1} MODEL.SIE_CAMERA ${2} MODEL.SIE_VIEW ${3} MODEL.JPM ${4} MODEL.TRANSFORMER_TYPE ${5} OUTPUT_DIR ${OUTPUT_DIR} DATASETS.NAMES "('your dataset name')"

Arguments

  • ${1}: stride size for pure transformer, e.g. [16, 16], [14, 14], [12, 12]
  • ${2}: whether using SIE with camera, True or False.
  • ${3}: whether using SIE with view, True or False.
  • ${4}: whether using JPM, True or False.
  • ${5}: choose transformer type from 'vit_base_patch16_224_TransReID',(The structure of the deit is the same as that of the vit, and only need to change the imagenet pretrained model) 'vit_small_patch16_224_TransReID','deit_small_patch16_224_TransReID',
  • ${OUTPUT_DIR}: folder for saving logs and checkpoints, e.g. ../logs/market1501

or you can directly train with following yml and commands:

# DukeMTMC transformer-based baseline
python train.py --config_file configs/DukeMTMC/vit_base.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC baseline + JPM
python train.py --config_file configs/DukeMTMC/vit_jpm.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC baseline + SIE
python train.py --config_file configs/DukeMTMC/vit_sie.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC TransReID (baseline + SIE + JPM)
python train.py --config_file configs/DukeMTMC/vit_transreid.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC TransReID with stride size [12, 12]
python train.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"

# MSMT17
python train.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# OCC_Duke
python train.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# Market
python train.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# VeRi
python train.py --config_file configs/VeRi/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"

# VehicleID (The dataset is large and we utilize 4 v100 GPUs for training )
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 66666 train.py --config_file configs/VehicleID/vit_transreid_stride.yml MODEL.DIST_TRAIN True
#  or using following commands:
Bash dist_train.sh 

Tips: For person datasets with size 256x128, TransReID with stride occupies 12GB GPU memory and TransReID occupies 7GB GPU memory.

Evaluation

python test.py --config_file 'choose which config to test' MODEL.DEVICE_ID "('your device id')" TEST.WEIGHT "('your path of trained checkpoints')"

Some examples:

# DukeMTMC
python test.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"  TEST.WEIGHT '../logs/duke_vit_transreid_stride/transformer_120.pth'
# MSMT17
python test.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/msmt17_vit_transreid_stride/transformer_120.pth'
# OCC_Duke
python test.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/occ_duke_vit_transreid_stride/transformer_120.pth'
# Market
python test.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"  TEST.WEIGHT '../logs/market_vit_transreid_stride/transformer_120.pth'
# VeRi
python test.py --config_file configs/VeRi/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/veri_vit_transreid_stride/transformer_120.pth'

# VehicleID (We test 10 times and get the final average score to avoid randomness)
python test.py --config_file configs/VehicleID/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/vehicleID_vit_transreid_stride/transformer_120.pth'

Trained Models and logs (Size 256)

framework

Datasets MSMT17 Market Duke OCC_Duke VeRi VehicleID
Model mAP | R1 mAP | R1 mAP | R1 mAP | R1 mAP | R1 R1 | R5
Baseline(ViT) 61.8 | 81.8 87.1 | 94.6 79.6 | 89.0 53.8 | 61.1 79.0 | 96.6 83.5 | 96.7
model | log model | log model | log model | log model | log model | test
TransReID*(ViT) 67.8 | 85.3 89.0 | 95.1 82.2 | 90.7 59.5 | 67.4 82.1 | 97.4 85.2 | 97.4
model | log model | log model | log model | log model | log model | test
TransReID*(DeiT) 66.3 | 84.0 88.5 | 95.1 81.9 | 90.7 57.7 | 65.2 82.4 | 97.1 86.0 | 97.6
model | log model | log model | log model | log model | log model | test

Note: We reorganize code and the performances are slightly different from the paper's.

Acknowledgement

Codebase from reid-strong-baseline , pytorch-image-models

We import veri776 viewpoint label from repo: https://github.com/Zhongdao/VehicleReIDKeyPointData

Citation

If you find this code useful for your research, please cite our paper

@InProceedings{He_2021_ICCV,
    author    = {He, Shuting and Luo, Hao and Wang, Pichao and Wang, Fan and Li, Hao and Jiang, Wei},
    title     = {TransReID: Transformer-Based Object Re-Identification},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15013-15022}
}

Contact

If you have any question, please feel free to contact us. E-mail: [email protected] , [email protected]

Owner
DamoCV
CV team of DAMO academy
DamoCV
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022