COCO Style Dataset Generator GUI

Overview

COCO-Style-Dataset-Generator-GUI

This is a simple GUI-based Widget based on matplotlib in Python to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes using a simple interactive User Interface. Annotation can be in terms of polygon points covering all parts of an object (see instructions in README) or it can simply be a bounding box, for which you click and drag the mouse button. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. This shifts the work load from painstakingly annotating all the objects in every image to altering wrong predictions made by the system which maybe simpler once an efficient model is learnt.

Note: This repo only contains code to annotate every object using a single polygon figure. Support for multi-polygon objects and iscrowd=True annotations isn't available yet. Feel free to extend the repo as you wish. Also, the code uses xyxy bounding boxes while coco uses xywh; something to keep in mind if you intend to create a custom COCO dataset to plug into other models as COCO datasets.

REQUIREMENTS:

Python 3.5+ is required to run the Mask RCNN code. If only the GUI tool is used, Python2.7 or Python3.5+ can be used.

NOTE: For python2.7, OpenCV needs to be installed from source and configured to be in the environment running the code.
Before installing, please upgrade setuptools using: pip install --upgrade setuptools
For Windows users, please install Visual Studio C++ 14 or higher if necessary using this link: http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.

RUN THE SEGMENTOR GUI:

Clone the repo.

git clone https://github.com/hanskrupakar/COCO-Style-Dataset-Generator-GUI.git

Installing Dependencies:

Before running the code, install required pre-requisite python packages using pip.

If you wish to use Mask RCNN to prelabel based on a trained model, please use the environment variable MASK_RCNN="y", otherwise there's no need to include it and you could just perform the install.

Without Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
python setup.py install
With Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
MASK_RCNN="y" python3 setup.py install

Running the instance segmentation GUI without Mask RCNN pretrained predictions:

In a separate text file, list the target labels/classes line-by-line to be displayed along with the dataset for class labels. For example, look at classes/products.txt

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt

Running the instance segmentation GUI augmented by initial Mask RCNN pretrained model predictions:

To run the particular model for the demo, download the pretrained weights from HERE!!!. Download and extract pretrained weights into the repository.

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt \
                                              -w 
   
     [--config 
    
     ]

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt \
                                              -w 
     
       [--config 
      
       ]

      
     
    
   

The configuration file for Mask RCNN becomes relevant when you play around with the configuration parameters that make up the network. In order to seamlessly use the repository with multiple such Mask RCNN models for different types of datasets, you could create a single config file for every project and use them as you please. The base repository has been configured to work well with the demo model provided and so any change to the parameters should be followed by generation of its corresponding config file.

HINT: Use get_json_config.py inside Mask RCNN to get config file wrt specific parameters of Mask RCNN. You could either clone Mask_RCNN, use pip install -e Mask_RCNN/ to replace the mask_rcnn installed from this repo and then get access to get_json_config.py easily or you could find where pip installs mask_rcnn and find it directly from the source.

USAGE: segment.py [-h] -i IMAGE_DIR -c CLASS_FILE [-w WEIGHTS_PATH] [-x CONFIG_PATH]

USAGE: segment_bbox_only.py [-h] -i IMAGE_FILE -c CLASSES_FILE [-j JSON_FILE] [--save_csv] [-w WEIGHTS_PATH] [-x CONFIG_PATH]

Optional Arguments
Shorthand Flag Name Description
-h --help Show this help message and exit
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-c CLASS_FILE --class_file CLASS_FILE Path to object labels
-w WEIGHTS_PATH --weights_path WEIGHTS_PATH Path to Mask RCNN checkpoint save file
-j JSON_FILE --json_file JSON_FILE Path of JSON file to append dataset to
--save_csv Choose option to save dataset as CSV file
-x CONFIG_FILE --config_file CONFIG_FILE Path of JSON file for training config; Use get_json_config script from Mask RCNN

POLYGON SEGMENTATION GUI CONTROLS:

deepmagic

In this demo, all the green patches over the objects are the rough masks generated by a pretrained Mask RCNN network.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and polygon is being edited)

  'a'       toggle vertex markers on and off.
            When vertex markers are on, you can move them, delete them

  'd'       delete the vertex under point

  'i'       insert a vertex at point near the boundary of the polygon.

Left click  Use on any point on the polygon boundary and move around
            by dragging to alter shape of polygon

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click      Create a point for a polygon mask around an object

Right Click     Complete the polygon currently formed by connecting all selected points

Left Click Drag Create a bounding box rectangle from point 1 to point 2 (works only
                when there are no polygon points on screen for particular object)

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

BRING PREVIOUS ANNOTATIONS  Bring back the annotations from the previous image to preserve
                            similar annotations.

SUBMIT                      To be clicked after Right click completes polygon! Finalizes current
                            segmentation mask and class label picked.
                            After this, the polygon cannot be edited.

NEXT                        Save all annotations created for current file and move on to next image.

PREV                        Goto previous image to re-annotate it. This deletes the annotations
                            created for the file before the current one in order to
                            rewrite the fresh annotations.

RESET                       If when drawing the polygon using points, the polygon doesn't cover the
                            object properly, reset will let you start fresh with the current polygon.
                            This deletes all the points on the image.

The green annotation boxes from the network can be edited by pressing on the Keyboard key a when the mouse pointer is on top of a particular such mask. Once you press a, the points making up that polygon will show up and you can then edit it using the key bindings specified. Once you're done editing the polygon, press a again to finalize the edits. At this point, it will become possible to submit that particular annotation and move on to the next one.

Once the GUI tool has been used successfully and relevant txt files have been created for all annotated images, one can use create_json_file.py to create the COCO-Style JSON file.

python -m coco_dataset_generator.utils.create_json_file -i background/ -c classes/products.txt
                                        -o output.json -t jpg
USAGE: create_json_file.py [-h] -i IMAGE_DIR -o FILE_PATH -c CLASS_FILE -t TYPE
Optional Arguments
Shorthand Flag Name Description
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-o FILE_PATH --file_path FILE_PATH Path of output file
-c CLASS_FILE --class_file CLASS_FILE Path of file with output classes
-t TYPE --type TYPE Type of the image files (jpg, png etc.)

RECTANGULAR BOUNDING BOX GUI CONTROLS:

The same GUI is designed slightly differently in case of rectangular bounding box annotations with speed of annotation in mind. Thus, most keys are keyboard bindings. Most ideally, this interface is very suited to serve to track objects across video by dragging around a box of similar size. Since the save button saves multiple frame results together, the JSON file is directly created instead of txt files for each image, which means there wouldn't be a need to use create_json_file.py.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and rectangle is being edited)

  'a'       toggle vertex markers on and off.  When vertex markers are on,
            you can move them, delete them

  'i'       insert rectangle in the list of final objects to save.

Left click  Use on any point on the rectangle boundary and move around by
            dragging to alter shape of rectangle

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click Drag Create a bounding box rectangle from point 1 to point 2.

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

  'n'           Press key to move on to next image after completing all
                rectangles in current image

  SAVE          Save all annotated objects so far

LIST OF FUNCTIONALITIES:

    FILE                            FUNCTIONALITY

cut_objects.py                  Cuts objects based on bounding box annotations using dataset.json
                                file and creates occlusion-based augmented images dataset.

create_json_file.py             Takes a directory of annotated images (use segment.py to annotate
                                into text files) and returns a COCO-style JSON file.

extract_frames.py               Takes a directory of videos and extracts all the frames of all
                                videos into a folder labeled adequately by the video name.

pascal_to_coco.py               Takes a PASCAL-style dataset directory with JPEGImages/ and
                                Annotations/ folders and uses the bounding box as masks to
                                create a COCO-style JSON file.

segment.py                      Read the instructions above.

segment_bbox_only.py            Same functionality but optimized for easier annotation of
                                bbox-only datasets.

test_*.py                       Unit tests.

visualize_dataset.py            Visualize the annotations created using the tool.

visualize_json_file.py          Visualize the dataset JSON file annotations on the entire dataset.

compute_dataset_statistics.py   Find distribution of objects in the dataset by counts.

combine_json_files.py           Combine different JSON files together into a single dataset file.

delete_images.py                Delete necessary images from the JSON dataset.

NOTE: Please use python .py -h for details on how to use each of the above files.

Owner
Hans Krupakar
Data Science | Computer Vision
Hans Krupakar
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022