COCO Style Dataset Generator GUI

Overview

COCO-Style-Dataset-Generator-GUI

This is a simple GUI-based Widget based on matplotlib in Python to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes using a simple interactive User Interface. Annotation can be in terms of polygon points covering all parts of an object (see instructions in README) or it can simply be a bounding box, for which you click and drag the mouse button. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. This shifts the work load from painstakingly annotating all the objects in every image to altering wrong predictions made by the system which maybe simpler once an efficient model is learnt.

Note: This repo only contains code to annotate every object using a single polygon figure. Support for multi-polygon objects and iscrowd=True annotations isn't available yet. Feel free to extend the repo as you wish. Also, the code uses xyxy bounding boxes while coco uses xywh; something to keep in mind if you intend to create a custom COCO dataset to plug into other models as COCO datasets.

REQUIREMENTS:

Python 3.5+ is required to run the Mask RCNN code. If only the GUI tool is used, Python2.7 or Python3.5+ can be used.

NOTE: For python2.7, OpenCV needs to be installed from source and configured to be in the environment running the code.
Before installing, please upgrade setuptools using: pip install --upgrade setuptools
For Windows users, please install Visual Studio C++ 14 or higher if necessary using this link: http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.

RUN THE SEGMENTOR GUI:

Clone the repo.

git clone https://github.com/hanskrupakar/COCO-Style-Dataset-Generator-GUI.git

Installing Dependencies:

Before running the code, install required pre-requisite python packages using pip.

If you wish to use Mask RCNN to prelabel based on a trained model, please use the environment variable MASK_RCNN="y", otherwise there's no need to include it and you could just perform the install.

Without Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
python setup.py install
With Mask RCNN
cd COCO-Style-Dataset-Generator-GUI/
MASK_RCNN="y" python3 setup.py install

Running the instance segmentation GUI without Mask RCNN pretrained predictions:

In a separate text file, list the target labels/classes line-by-line to be displayed along with the dataset for class labels. For example, look at classes/products.txt

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt

Running the instance segmentation GUI augmented by initial Mask RCNN pretrained model predictions:

To run the particular model for the demo, download the pretrained weights from HERE!!!. Download and extract pretrained weights into the repository.

python3 -m coco_dataset_generator.gui.segment -i background/ -c classes/products.txt \
                                              -w 
   
     [--config 
    
     ]

python3 -m coco_dataset_generator.gui.segment_bbox_only -i background/ -c classes/products.txt \
                                              -w 
     
       [--config 
      
       ]

      
     
    
   

The configuration file for Mask RCNN becomes relevant when you play around with the configuration parameters that make up the network. In order to seamlessly use the repository with multiple such Mask RCNN models for different types of datasets, you could create a single config file for every project and use them as you please. The base repository has been configured to work well with the demo model provided and so any change to the parameters should be followed by generation of its corresponding config file.

HINT: Use get_json_config.py inside Mask RCNN to get config file wrt specific parameters of Mask RCNN. You could either clone Mask_RCNN, use pip install -e Mask_RCNN/ to replace the mask_rcnn installed from this repo and then get access to get_json_config.py easily or you could find where pip installs mask_rcnn and find it directly from the source.

USAGE: segment.py [-h] -i IMAGE_DIR -c CLASS_FILE [-w WEIGHTS_PATH] [-x CONFIG_PATH]

USAGE: segment_bbox_only.py [-h] -i IMAGE_FILE -c CLASSES_FILE [-j JSON_FILE] [--save_csv] [-w WEIGHTS_PATH] [-x CONFIG_PATH]

Optional Arguments
Shorthand Flag Name Description
-h --help Show this help message and exit
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-c CLASS_FILE --class_file CLASS_FILE Path to object labels
-w WEIGHTS_PATH --weights_path WEIGHTS_PATH Path to Mask RCNN checkpoint save file
-j JSON_FILE --json_file JSON_FILE Path of JSON file to append dataset to
--save_csv Choose option to save dataset as CSV file
-x CONFIG_FILE --config_file CONFIG_FILE Path of JSON file for training config; Use get_json_config script from Mask RCNN

POLYGON SEGMENTATION GUI CONTROLS:

deepmagic

In this demo, all the green patches over the objects are the rough masks generated by a pretrained Mask RCNN network.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and polygon is being edited)

  'a'       toggle vertex markers on and off.
            When vertex markers are on, you can move them, delete them

  'd'       delete the vertex under point

  'i'       insert a vertex at point near the boundary of the polygon.

Left click  Use on any point on the polygon boundary and move around
            by dragging to alter shape of polygon

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click      Create a point for a polygon mask around an object

Right Click     Complete the polygon currently formed by connecting all selected points

Left Click Drag Create a bounding box rectangle from point 1 to point 2 (works only
                when there are no polygon points on screen for particular object)

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

BRING PREVIOUS ANNOTATIONS  Bring back the annotations from the previous image to preserve
                            similar annotations.

SUBMIT                      To be clicked after Right click completes polygon! Finalizes current
                            segmentation mask and class label picked.
                            After this, the polygon cannot be edited.

NEXT                        Save all annotations created for current file and move on to next image.

PREV                        Goto previous image to re-annotate it. This deletes the annotations
                            created for the file before the current one in order to
                            rewrite the fresh annotations.

RESET                       If when drawing the polygon using points, the polygon doesn't cover the
                            object properly, reset will let you start fresh with the current polygon.
                            This deletes all the points on the image.

The green annotation boxes from the network can be edited by pressing on the Keyboard key a when the mouse pointer is on top of a particular such mask. Once you press a, the points making up that polygon will show up and you can then edit it using the key bindings specified. Once you're done editing the polygon, press a again to finalize the edits. At this point, it will become possible to submit that particular annotation and move on to the next one.

Once the GUI tool has been used successfully and relevant txt files have been created for all annotated images, one can use create_json_file.py to create the COCO-Style JSON file.

python -m coco_dataset_generator.utils.create_json_file -i background/ -c classes/products.txt
                                        -o output.json -t jpg
USAGE: create_json_file.py [-h] -i IMAGE_DIR -o FILE_PATH -c CLASS_FILE -t TYPE
Optional Arguments
Shorthand Flag Name Description
-i IMAGE_DIR --image_dir IMAGE_DIR Path to the image dir
-o FILE_PATH --file_path FILE_PATH Path of output file
-c CLASS_FILE --class_file CLASS_FILE Path of file with output classes
-t TYPE --type TYPE Type of the image files (jpg, png etc.)

RECTANGULAR BOUNDING BOX GUI CONTROLS:

The same GUI is designed slightly differently in case of rectangular bounding box annotations with speed of annotation in mind. Thus, most keys are keyboard bindings. Most ideally, this interface is very suited to serve to track objects across video by dragging around a box of similar size. Since the save button saves multiple frame results together, the JSON file is directly created instead of txt files for each image, which means there wouldn't be a need to use create_json_file.py.

Key-bindings/ Buttons

EDIT MODE (when a is pressed and rectangle is being edited)

  'a'       toggle vertex markers on and off.  When vertex markers are on,
            you can move them, delete them

  'i'       insert rectangle in the list of final objects to save.

Left click  Use on any point on the rectangle boundary and move around by
            dragging to alter shape of rectangle

REGULAR MODE

Scroll Up       Zoom into image

Scroll Down     Zoom out of image

Left Click Drag Create a bounding box rectangle from point 1 to point 2.

  'a'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to select it for editing

  'r'           Press key on top of overlayed polygon (from Mask RCNN or
                previous annotations) to completely remove it

  'n'           Press key to move on to next image after completing all
                rectangles in current image

  SAVE          Save all annotated objects so far

LIST OF FUNCTIONALITIES:

    FILE                            FUNCTIONALITY

cut_objects.py                  Cuts objects based on bounding box annotations using dataset.json
                                file and creates occlusion-based augmented images dataset.

create_json_file.py             Takes a directory of annotated images (use segment.py to annotate
                                into text files) and returns a COCO-style JSON file.

extract_frames.py               Takes a directory of videos and extracts all the frames of all
                                videos into a folder labeled adequately by the video name.

pascal_to_coco.py               Takes a PASCAL-style dataset directory with JPEGImages/ and
                                Annotations/ folders and uses the bounding box as masks to
                                create a COCO-style JSON file.

segment.py                      Read the instructions above.

segment_bbox_only.py            Same functionality but optimized for easier annotation of
                                bbox-only datasets.

test_*.py                       Unit tests.

visualize_dataset.py            Visualize the annotations created using the tool.

visualize_json_file.py          Visualize the dataset JSON file annotations on the entire dataset.

compute_dataset_statistics.py   Find distribution of objects in the dataset by counts.

combine_json_files.py           Combine different JSON files together into a single dataset file.

delete_images.py                Delete necessary images from the JSON dataset.

NOTE: Please use python .py -h for details on how to use each of the above files.

Owner
Hans Krupakar
Data Science | Computer Vision
Hans Krupakar
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022