Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Overview

Hold me tight! Influence of discriminative features on deep network boundaries

This is the source code to reproduce the experiments of the NeurIPS 2020 paper "Hold me tight! Influence of discriminative features on deep network boundaries" by Guillermo Ortiz-Jimenez*, Apostolos Modas*, Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard.

Abstract

Important insights towards the explainability of neural networks reside in the characteristics of their decision boundaries. In this work, we borrow tools from the field of adversarial robustness, and propose a new perspective that relates dataset features to the distance of samples to the decision boundary. This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets. We use this framework to reveal some intriguing properties of CNNs. Specifically, we rigorously confirm that neural networks exhibit a high invariance to non-discriminative features, and show that very small perturbations of the training samples in certain directions can lead to sudden invariances in the orthogonal ones. This is precisely the mechanism that adversarial training uses to achieve robustness.

Dependencies

To run our code on a Linux machine with a GPU, install the Python packages in a fresh Anaconda environment:

$ conda env create -f environment.yml
$ conda activate hold_me_tight

Experiments

This repository contains code to reproduce the following experiments:

You can reproduce this experiments separately using their individual scripts, or have a look at the comprehensive Jupyter notebook.

Pretrained architectures

We also provide a set of pretrained models that we used in our experiments. The exact hyperparameters and settings can be found in the Supplementary material of the paper. All the models are publicly available and can be downloaded from here. In order to execute the scripts using the pretrained models, it is recommended to download them and save them under the Models/Pretrained/ directory.

Architecture Dataset Training method
LeNet MNIST Standard
ResNet18 MNIST Standard
ResNet18 CIFAR10 Standard
VGG19 CIFAR10 Standard
DenseNet121 CIFAR10 Standard
LeNet Flipped MNIST Standard + Frequency flip
ResNet18 Flipped MNIST Standard + Frequency flip
ResNet18 Flipped CIFAR10 Standard + Frequency flip
VGG19 Flipped CIFAR10 Standard + Frequency flip
DenseNet121 Flipped CIFAR10 Standard + Frequency flip
ResNet50 Flipped ImageNet Standard + Frequency flip
ResNet18 Low-pass CIFAR10 Standard + Low-pass filtering
VGG19 Low-pass CIFAR10 Standard + Low-pass filtering
DenseNet121 Low-pass CIFAR10 Standard + Low-pass filtering
Robust LeNet MNIST L2 PGD adversarial training (eps = 2)
Robust ResNet18 MNIST L2 PGD adversarial training (eps = 2)
Robust ResNet18 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust VGG19 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust DenseNet121 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust ResNet50 ImageNet L2 PGD adversarial training (eps = 3) (copied from here)
Robust LeNet Flipped MNIST L2 PGD adversarial training (eps = 2) with Dykstra projection + Frequency flip
Robust ResNet18 Flipped MNIST L2 PGD adversarial training (eps = 2) with Dykstra projection + Frequency flip
Robust ResNet18 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip
Robust VGG19 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip
Robust DenseNet121 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip

Reference

If you use this code, or some of the attached models, please cite the following paper:

@InCollection{OrtizModasHMT2020,
  TITLE = {{Hold me tight! Influence of discriminative features on deep network boundaries}},
  AUTHOR = {{Ortiz-Jimenez}, Guillermo and {Modas}, Apostolos and {Moosavi-Dezfooli}, Seyed-Mohsen and Frossard, Pascal},
  BOOKTITLE = {Advances in Neural Information Processing Systems 34},
  MONTH = dec,
  YEAR = {2020}
}
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022