In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

Overview

cdf_att_classification

classes = {0: 'cat', 1: 'dog', 2: 'flower'}

In this project we use both Resnet and Self-attention layer for cdf-Classification. Specifically, For Resnet, we extract low level features from Convolutional Neural Network (CNN) trained on Dogcatflower_2 dataset(details show later).
We take inspiration from the Self-attention mechanism which is a prominent method in cv domain. We also use Grad-CAM algorithm to Visualize the gradient of the back propagation of the pretrain model to understand this network. The code is released for academic research use only. For commercial use, please contact [[email protected]].

Installation

Clone this repo.

git clone https://github.com/Alan-lab/cdf_classification
cd cdf_classification/

This code requires pytorch, python3.7, cv2, d2l. Please install it.

Dataset Preparation

For cdf_classification, the datasets must be downloaded beforehand. Please download them on the respective webpages. Please cite them if you use the data.

Preparing Cat and Dog Dataset. The dataset can be downloaded here.

Preparing flower Dataset. The dataset can be downloaded here.

You can also download Dogcatflower_2 dataset(made from above datasets) use the following link:

Link:https://pan.baidu.com/s/1ZcP_isbbRQBq9BHU6p_VtQ

key:oz7z

Training New Models

  1. Prepare your own dataset like this (https://github.com/Alan-lab/data/Dogcatflower_2).

  2. Training:

python main.py

model.pth will be extrated in the folder ./cdf_classification.

If av_test_acc < 0.75, model.pth will not save(d2l.train_ch6).

3.Predict

Prepare your valid dataset like this (https://github.com/Alan-lab/data/catsdogsflowers/valid1).

python Predict/predict.py

4.Class Activation Map The response size of the feature map is mapped to the original image, allowing readers to understand the effect of the model more intuitively. Prepare your picture like this (https://github.com/Alan-lab/data/Dogcatflower/test/flower/flower.1501.jpg).

python Viewer/Grad_CAM.py
  1. More details can be found in folder.

The Experimental Result

  1. Preformance
dataset Cat-acc Dog-acc flower-acc
Dogcatflower_2_train 96.2 88.7 93.6
Dogcatflower_2_test 72.7 69.2 89.7
catsdogsflowers_valid1 75.1 76.9 91.4
catsdogsflowers_valid2 75.5 73.5 92.9

2.Visualization

Postive sample fig1 fig2 fig3

Negative sample fig4

Multi-attention

show_attention

Acknowledgments

This work is mainly supported by (https://courses.d2l.ai/zh-v2/) and CSDN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Lailanqing ([email protected]).

Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022