In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

Overview

cdf_att_classification

classes = {0: 'cat', 1: 'dog', 2: 'flower'}

In this project we use both Resnet and Self-attention layer for cdf-Classification. Specifically, For Resnet, we extract low level features from Convolutional Neural Network (CNN) trained on Dogcatflower_2 dataset(details show later).
We take inspiration from the Self-attention mechanism which is a prominent method in cv domain. We also use Grad-CAM algorithm to Visualize the gradient of the back propagation of the pretrain model to understand this network. The code is released for academic research use only. For commercial use, please contact [[email protected]].

Installation

Clone this repo.

git clone https://github.com/Alan-lab/cdf_classification
cd cdf_classification/

This code requires pytorch, python3.7, cv2, d2l. Please install it.

Dataset Preparation

For cdf_classification, the datasets must be downloaded beforehand. Please download them on the respective webpages. Please cite them if you use the data.

Preparing Cat and Dog Dataset. The dataset can be downloaded here.

Preparing flower Dataset. The dataset can be downloaded here.

You can also download Dogcatflower_2 dataset(made from above datasets) use the following link:

Link:https://pan.baidu.com/s/1ZcP_isbbRQBq9BHU6p_VtQ

key:oz7z

Training New Models

  1. Prepare your own dataset like this (https://github.com/Alan-lab/data/Dogcatflower_2).

  2. Training:

python main.py

model.pth will be extrated in the folder ./cdf_classification.

If av_test_acc < 0.75, model.pth will not save(d2l.train_ch6).

3.Predict

Prepare your valid dataset like this (https://github.com/Alan-lab/data/catsdogsflowers/valid1).

python Predict/predict.py

4.Class Activation Map The response size of the feature map is mapped to the original image, allowing readers to understand the effect of the model more intuitively. Prepare your picture like this (https://github.com/Alan-lab/data/Dogcatflower/test/flower/flower.1501.jpg).

python Viewer/Grad_CAM.py
  1. More details can be found in folder.

The Experimental Result

  1. Preformance
dataset Cat-acc Dog-acc flower-acc
Dogcatflower_2_train 96.2 88.7 93.6
Dogcatflower_2_test 72.7 69.2 89.7
catsdogsflowers_valid1 75.1 76.9 91.4
catsdogsflowers_valid2 75.5 73.5 92.9

2.Visualization

Postive sample fig1 fig2 fig3

Negative sample fig4

Multi-attention

show_attention

Acknowledgments

This work is mainly supported by (https://courses.d2l.ai/zh-v2/) and CSDN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Lailanqing ([email protected]).

Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023