A novel Engagement Detection with Multi-Task Training (ED-MTT) system

Related tags

Deep LearningED-MTT
Overview

ED-MTT

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment. You can check the colab notebook bellow for detailed explanatoins about data loading and code execution.

Open In Colab

Introduction & Problem Definition

With the Covid-19 outbreak, the online working and learning environments became essential in our lives. For this reason, automatic analysis of non-verbal communication becomes crucial in online environments.

Engagement level is a type of social signal that can be predicted from facial expression and body pose. To this end, we propose an end-to-end deep learning-based system that detects the engagement level of the subject in an e-learning environment.

The engagement level feedback is important because:

  • Make aware students of their performance in classes.
  • Will help instructors to detect confusing or unclear parts of the teaching material.

Model Architecture

triplet_loss.png

The proposed system first extracts features with OpenFace, then aggregates frames in a window for calculating feature statistics as additional features. Finally, uses Bi-LSTM for generating vector embeddings from input sequences. In this system, we introduce a triplet loss as an auxiliary task and design the system as a multi-task training framework by taking inspiration from, where self-supervised contrastive learning of multi-view facial expressions was introduced. To the best of our knowledge, this is a novel approach in engagement detection literature. The key novelty of this work is the multi-task training framework using triplet loss together with Mean Squared Error (MSE). The main contributions of this paper are as follows:

  • Multi-task training with triplet and MSE losses introduces an additional regularization and reduces over-fitting due to very small sample size.
  • Using triplet loss mitigates the label reliability problem since it measures relative similarity between samples.
  • A system with lightweight feature extraction is efficient and highly suitable for real-life applications.

Dataset

We evaluate the performance of ED-MTT on a publicly available ``Engagement in The Wild'' dataset which is comprised of separated training and validation sets.

Untitled

The dataset is comprised of 78 subjects (25 females and 53 males) whose ages are ranged from 19 to 27. Each subject is recorded while watching an approximately 5 minutes long stimulus video of a Korean Language lecture.

Results

We compare the performance of ED-MTT with 9 different works from the state-of-the-art which will be reviewed in the rest of this section. Our results show that ED-MTT outperforms these state-of-the-art methods with at least a 5.74% improvement on MSE.

paper_performance.png

Repository structure

ED-MTT
│   README.md
│   Engagement_Labels.txt
|   ED-MTT.ipynb

└───code
│   │   dataloader.py
|   |   model.py
|   |   train.py
|   |   test.py
│   │   fix_path.py
|   |   utils.py
|   |   requirements.txt

└───configs
    │   batchnorm_default.yaml
    │   sweep.yaml

Running the Code

Untitled

Untitled

To train the experiments and manage the experiments, we used PyTorch Lightning together with Weights&Biases. All the detailed explonations to;

  • Load data and pre-trained weights,
  • Train the model from scratch,
  • Manage expriments and hyper-parameter search with wandb,
  • Reproduce the results presented in the paper,

are shown in ED-MTT.ipynb colab notebook.

Owner
Onur Çopur
Data scientist with research interests in computer vision and NLP. Highly skilled in Python programming, MLOps and deep learning frameworks.
Onur Çopur
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022