A novel Engagement Detection with Multi-Task Training (ED-MTT) system

Related tags

Deep LearningED-MTT
Overview

ED-MTT

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment. You can check the colab notebook bellow for detailed explanatoins about data loading and code execution.

Open In Colab

Introduction & Problem Definition

With the Covid-19 outbreak, the online working and learning environments became essential in our lives. For this reason, automatic analysis of non-verbal communication becomes crucial in online environments.

Engagement level is a type of social signal that can be predicted from facial expression and body pose. To this end, we propose an end-to-end deep learning-based system that detects the engagement level of the subject in an e-learning environment.

The engagement level feedback is important because:

  • Make aware students of their performance in classes.
  • Will help instructors to detect confusing or unclear parts of the teaching material.

Model Architecture

triplet_loss.png

The proposed system first extracts features with OpenFace, then aggregates frames in a window for calculating feature statistics as additional features. Finally, uses Bi-LSTM for generating vector embeddings from input sequences. In this system, we introduce a triplet loss as an auxiliary task and design the system as a multi-task training framework by taking inspiration from, where self-supervised contrastive learning of multi-view facial expressions was introduced. To the best of our knowledge, this is a novel approach in engagement detection literature. The key novelty of this work is the multi-task training framework using triplet loss together with Mean Squared Error (MSE). The main contributions of this paper are as follows:

  • Multi-task training with triplet and MSE losses introduces an additional regularization and reduces over-fitting due to very small sample size.
  • Using triplet loss mitigates the label reliability problem since it measures relative similarity between samples.
  • A system with lightweight feature extraction is efficient and highly suitable for real-life applications.

Dataset

We evaluate the performance of ED-MTT on a publicly available ``Engagement in The Wild'' dataset which is comprised of separated training and validation sets.

Untitled

The dataset is comprised of 78 subjects (25 females and 53 males) whose ages are ranged from 19 to 27. Each subject is recorded while watching an approximately 5 minutes long stimulus video of a Korean Language lecture.

Results

We compare the performance of ED-MTT with 9 different works from the state-of-the-art which will be reviewed in the rest of this section. Our results show that ED-MTT outperforms these state-of-the-art methods with at least a 5.74% improvement on MSE.

paper_performance.png

Repository structure

ED-MTT
│   README.md
│   Engagement_Labels.txt
|   ED-MTT.ipynb

└───code
│   │   dataloader.py
|   |   model.py
|   |   train.py
|   |   test.py
│   │   fix_path.py
|   |   utils.py
|   |   requirements.txt

└───configs
    │   batchnorm_default.yaml
    │   sweep.yaml

Running the Code

Untitled

Untitled

To train the experiments and manage the experiments, we used PyTorch Lightning together with Weights&Biases. All the detailed explonations to;

  • Load data and pre-trained weights,
  • Train the model from scratch,
  • Manage expriments and hyper-parameter search with wandb,
  • Reproduce the results presented in the paper,

are shown in ED-MTT.ipynb colab notebook.

Owner
Onur Çopur
Data scientist with research interests in computer vision and NLP. Highly skilled in Python programming, MLOps and deep learning frameworks.
Onur Çopur
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Vikrant Deshpande 1 Nov 17, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021