Contrastive Learning of Structured World Models

Related tags

Deep Learningc-swm
Overview

Contrastive Learning of Structured World Models

This repository contains the official PyTorch implementation of:

Contrastive Learning of Structured World Models.
Thomas Kipf, Elise van der Pol, Max Welling.
http://arxiv.org/abs/1911.12247

C-SWM

Abstract: A structured understanding of our world in terms of objects, relations, and hierarchies is an important component of human cognition. Learning such a structured world model from raw sensory data remains a challenge. As a step towards this goal, we introduce Contrastively-trained Structured World Models (C-SWMs). C-SWMs utilize a contrastive approach for representation learning in environments with compositional structure. We structure each state embedding as a set of object representations and their relations, modeled by a graph neural network. This allows objects to be discovered from raw pixel observations without direct supervision as part of the learning process. We evaluate C-SWMs on compositional environments involving multiple interacting objects that can be manipulated independently by an agent, simple Atari games, and a multi-object physics simulation. Our experiments demonstrate that C-SWMs can overcome limitations of models based on pixel reconstruction and outperform typical representatives of this model class in highly structured environments, while learning interpretable object-based representations.

Requirements

  • Python 3.6 or 3.7
  • PyTorch version 1.2
  • OpenAI Gym version: 0.12.0 pip install gym==0.12.0
  • OpenAI Atari_py version: 0.1.4: pip install atari-py==0.1.4
  • Scikit-image version 0.15.0 pip install scikit-image==0.15.0
  • Matplotlib version 3.0.2 pip install matplotlib==3.0.2

Generate datasets

2D Shapes:

python data_gen/env.py --env_id ShapesTrain-v0 --fname data/shapes_train.h5 --num_episodes 1000 --seed 1
python data_gen/env.py --env_id ShapesEval-v0 --fname data/shapes_eval.h5 --num_episodes 10000 --seed 2

3D Cubes:

python data_gen/env.py --env_id CubesTrain-v0 --fname data/cubes_train.h5 --num_episodes 1000 --seed 3
python data_gen/env.py --env_id CubesEval-v0 --fname data/cubes_eval.h5 --num_episodes 10000 --seed 4

Atari Pong:

python data_gen/env.py --env_id PongDeterministic-v4 --fname data/pong_train.h5 --num_episodes 1000 --atari --seed 1
python data_gen/env.py --env_id PongDeterministic-v4 --fname data/pong_eval.h5 --num_episodes 100 --atari --seed 2

Space Invaders:

python data_gen/env.py --env_id SpaceInvadersDeterministic-v4 --fname data/spaceinvaders_train.h5 --num_episodes 1000 --atari --seed 1
python data_gen/env.py --env_id SpaceInvadersDeterministic-v4 --fname data/spaceinvaders_eval.h5 --num_episodes 100 --atari --seed 2

3-Body Gravitational Physics:

python data_gen/physics.py --num-episodes 5000 --fname data/balls_train.h5 --seed 1
python data_gen/physics.py --num-episodes 1000 --fname data/balls_eval.h5 --eval --seed 2

Run model training and evaluation

2D Shapes:

python train.py --dataset data/shapes_train.h5 --encoder small --name shapes
python eval.py --dataset data/shapes_eval.h5 --save-folder checkpoints/shapes --num-steps 1

3D Cubes:

python train.py --dataset data/cubes_train.h5 --encoder large --name cubes
python eval.py --dataset data/cubes_eval.h5 --save-folder checkpoints/cubes --num-steps 1

Atari Pong:

python train.py --dataset data/pong_train.h5 --encoder medium --embedding-dim 4 --action-dim 6 --num-objects 3 --copy-action --epochs 200 --name pong
python eval.py --dataset data/pong_eval.h5 --save-folder checkpoints/pong --num-steps 1

Space Invaders:

python train.py --dataset data/spaceinvaders_train.h5 --encoder medium --embedding-dim 4 --action-dim 6 --num-objects 3 --copy-action --epochs 200 --name spaceinvaders
python eval.py --dataset data/spaceinvaders_eval.h5 --save-folder checkpoints/spaceinvaders --num-steps 1

3-Body Gravitational Physics:

python train.py --dataset data/balls_train.h5 --encoder medium --embedding-dim 4 --num-objects 3 --ignore-action --name balls
python eval.py --dataset data/balls_eval.h5 --save-folder checkpoints/balls --num-steps 1

Cite

If you make use of this code in your own work, please cite our paper:

@article{kipf2019contrastive,
  title={Contrastive Learning of Structured World Models}, 
  author={Kipf, Thomas and van der Pol, Elise and Welling, Max}, 
  journal={arXiv preprint arXiv:1911.12247}, 
  year={2019} 
}
Owner
Thomas Kipf
Thomas Kipf
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022