Contrastive Learning of Structured World Models

Related tags

Deep Learningc-swm
Overview

Contrastive Learning of Structured World Models

This repository contains the official PyTorch implementation of:

Contrastive Learning of Structured World Models.
Thomas Kipf, Elise van der Pol, Max Welling.
http://arxiv.org/abs/1911.12247

C-SWM

Abstract: A structured understanding of our world in terms of objects, relations, and hierarchies is an important component of human cognition. Learning such a structured world model from raw sensory data remains a challenge. As a step towards this goal, we introduce Contrastively-trained Structured World Models (C-SWMs). C-SWMs utilize a contrastive approach for representation learning in environments with compositional structure. We structure each state embedding as a set of object representations and their relations, modeled by a graph neural network. This allows objects to be discovered from raw pixel observations without direct supervision as part of the learning process. We evaluate C-SWMs on compositional environments involving multiple interacting objects that can be manipulated independently by an agent, simple Atari games, and a multi-object physics simulation. Our experiments demonstrate that C-SWMs can overcome limitations of models based on pixel reconstruction and outperform typical representatives of this model class in highly structured environments, while learning interpretable object-based representations.

Requirements

  • Python 3.6 or 3.7
  • PyTorch version 1.2
  • OpenAI Gym version: 0.12.0 pip install gym==0.12.0
  • OpenAI Atari_py version: 0.1.4: pip install atari-py==0.1.4
  • Scikit-image version 0.15.0 pip install scikit-image==0.15.0
  • Matplotlib version 3.0.2 pip install matplotlib==3.0.2

Generate datasets

2D Shapes:

python data_gen/env.py --env_id ShapesTrain-v0 --fname data/shapes_train.h5 --num_episodes 1000 --seed 1
python data_gen/env.py --env_id ShapesEval-v0 --fname data/shapes_eval.h5 --num_episodes 10000 --seed 2

3D Cubes:

python data_gen/env.py --env_id CubesTrain-v0 --fname data/cubes_train.h5 --num_episodes 1000 --seed 3
python data_gen/env.py --env_id CubesEval-v0 --fname data/cubes_eval.h5 --num_episodes 10000 --seed 4

Atari Pong:

python data_gen/env.py --env_id PongDeterministic-v4 --fname data/pong_train.h5 --num_episodes 1000 --atari --seed 1
python data_gen/env.py --env_id PongDeterministic-v4 --fname data/pong_eval.h5 --num_episodes 100 --atari --seed 2

Space Invaders:

python data_gen/env.py --env_id SpaceInvadersDeterministic-v4 --fname data/spaceinvaders_train.h5 --num_episodes 1000 --atari --seed 1
python data_gen/env.py --env_id SpaceInvadersDeterministic-v4 --fname data/spaceinvaders_eval.h5 --num_episodes 100 --atari --seed 2

3-Body Gravitational Physics:

python data_gen/physics.py --num-episodes 5000 --fname data/balls_train.h5 --seed 1
python data_gen/physics.py --num-episodes 1000 --fname data/balls_eval.h5 --eval --seed 2

Run model training and evaluation

2D Shapes:

python train.py --dataset data/shapes_train.h5 --encoder small --name shapes
python eval.py --dataset data/shapes_eval.h5 --save-folder checkpoints/shapes --num-steps 1

3D Cubes:

python train.py --dataset data/cubes_train.h5 --encoder large --name cubes
python eval.py --dataset data/cubes_eval.h5 --save-folder checkpoints/cubes --num-steps 1

Atari Pong:

python train.py --dataset data/pong_train.h5 --encoder medium --embedding-dim 4 --action-dim 6 --num-objects 3 --copy-action --epochs 200 --name pong
python eval.py --dataset data/pong_eval.h5 --save-folder checkpoints/pong --num-steps 1

Space Invaders:

python train.py --dataset data/spaceinvaders_train.h5 --encoder medium --embedding-dim 4 --action-dim 6 --num-objects 3 --copy-action --epochs 200 --name spaceinvaders
python eval.py --dataset data/spaceinvaders_eval.h5 --save-folder checkpoints/spaceinvaders --num-steps 1

3-Body Gravitational Physics:

python train.py --dataset data/balls_train.h5 --encoder medium --embedding-dim 4 --num-objects 3 --ignore-action --name balls
python eval.py --dataset data/balls_eval.h5 --save-folder checkpoints/balls --num-steps 1

Cite

If you make use of this code in your own work, please cite our paper:

@article{kipf2019contrastive,
  title={Contrastive Learning of Structured World Models}, 
  author={Kipf, Thomas and van der Pol, Elise and Welling, Max}, 
  journal={arXiv preprint arXiv:1911.12247}, 
  year={2019} 
}
Owner
Thomas Kipf
Thomas Kipf
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022